略証とは? わかりやすく解説

略証

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/01/21 17:50 UTC 版)

積の微分法則」の記事における「略証」の解説

定義により f, g: R → R が一点 x で微分可能ならば f ( x + h ) = f ( x ) + f ′ ( x ) h + ψ 1 ( h ) g ( x + h ) = g ( x ) + g ′ ( x ) h + ψ 2 ( h ) ( ψ 1 , ψ 2 ∼ o ( h ) ) {\displaystyle {\begin{aligned}f(x+h)&=f(x)+f'(x)h+\psi _{1}(h)\\g(x+h)&=g(x)+g'(x)h+\psi _{2}(h)\end{aligned}}\quad (\psi _{1},\psi _{2}\sim o(h))} と書くことができる。ここで o はランダウの記号lim h → 0 ψ 1 ( h ) h = lim h → 0 ψ 2 ( h ) h = 0 {\displaystyle \lim _{h\to 0}{\frac {\psi _{1}(h)}{h}}=\lim _{h\to 0}{\frac {\psi _{2}(h)}{h}}=0} を意味する。このとき、 ( f ⋅ g ) ( x + h ) − ( f ⋅ g ) ( x ) = ( f ( x ) + f ′ ( x ) h + ψ 1 ( h ) ) ( g ( x ) + g ′ ( x ) h + ψ 2 ( h ) ) − ( f ⋅ g ) ( x ) = ( f ′ ( x ) g ( x ) + f ( x ) g ′ ( x ) ) h + O ( h ) {\displaystyle {\begin{aligned}(f\cdot g)(x+h)-(f\cdot g)(x)&=(f(x)+f'(x)h+\psi _{1}(h))(g(x)+g'(x)h+\psi _{2}(h))-(f\cdot g)(x)\\&=(f'(x)g(x)+f(x)g'(x))h+O(h)\end{aligned}}} だから、h を 0 に近づける極限をとって所期結果を得る。

※この「略証」の解説は、「積の微分法則」の解説の一部です。
「略証」を含む「積の微分法則」の記事については、「積の微分法則」の概要を参照ください。

ウィキペディア小見出し辞書の「略証」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ



英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「略証」の関連用語

略証のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



略証のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaの積の微分法則 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。

©2024 GRAS Group, Inc.RSS