最近傍探索とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 最近傍探索の意味・解説 

最近傍探索

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2025/03/13 02:07 UTC 版)

最近傍探索: Nearest neighbor search, NNS)は、距離空間における最も近い点を探す最適化問題の一種、あるいはその解法。近接探索: proximity search)、類似探索: similarity search)、最近点探索: closest point search)などとも呼ぶ。問題はすなわち、距離空間 M における点の集合 S があり、クエリ点 qM があるとき、S の中で q に最も近い点を探す、という問題である。多くの場合、M には d次元のユークリッド空間が採用され、距離はユークリッド距離かマンハッタン距離で測定される。低次元の場合と高次元の場合で異なるアルゴリズムがとられる。

ドナルド・クヌースは、The Art of Computer Programming Vol.3(1973年)で、これを郵便局の問題で表した。これはすなわち、ある住所に最も近い郵便局を求める問題である。

解法

最近傍探索問題の解法としては、様々なものが提案されている。そのアルゴリズムの品質と利便性は、クエリへの応答にかかる時間とデータ構造が使用するメモリ量で判断される。直観的には、次元の呪いと呼ばれる特徴があるため、あらゆる場合に最適な解法は存在しないと言われている。

線形探索

最も単純な解法は、クエリで示された点とデータベース内の他の全ての点との距離を全部計算して、最も近いものを探すことである。データベースが小さい場合は問題ないが、その大きさや次元が増大すると急激に遅くなる。線形探索の処理時間は O(Nd) であり、NS基数dS の次元である。検索時にデータ構造は特に必要ないので、データベース以外の余分なメモリ消費はない。

空間分割

1970年代から、この問題に分枝限定法が適用されるようになった。ユークリッド空間の場合、この手法は空間索引または空間アクセス法として知られている。NNS問題を解くための空間分割法もいくつか考案された。最も単純な手法としてはkd木がある。これは、探索空間を再帰的に半分に2分割していくものである。クエリは、この木を根から葉に向かって辿っていくことで処理される(各ノードでどちらに行くかをクエリの内容と比較して判断する)。一定次元でのクエリ処理時間は O(log N) となる。R木というデータ構造も最近傍探索用に設計された。

一般の距離空間における分枝限定法の適用例として、VP木Bk木がある。

局所性鋭敏型ハッシュ

局所性鋭敏型ハッシュ(LSH)は、距離空間内の各点に距離空間的操作を施すことで、グループ分けする技法である。ある距離尺度で互いに近い点は同じグループになる確率が高くなる。

派生

  • k近傍法 は、クエリに最も近い方から k 個の近傍を特定する。
  • 近似最近傍探索 (: approximate nearest neighbor, ANN) は、次元の呪いへの対策として最近特に人気がある。
  • 最近傍距離比 (: nearest neighbor distance ratio) とは、距離の絶対値ではなく距離と距離の比を用いる方式。内容に基づく画像検索(CBIR)で使われることがある。より一般的には、いくつかのマッチング問題と関連する。
  • 最近点対問題 (: closest pair problem)とは、点集合の中から最も近い距離の点のペアを1組捜すアルゴリズムであり、



英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「最近傍探索」の関連用語

最近傍探索のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



最近傍探索のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの最近傍探索 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS