この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。 出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方 ) 出典検索? : "ブルン定数" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL (2015年12月 )
この記事は
英語版の対応するページ を翻訳することにより充実させることができます。 (2024年5月 )
翻訳前に重要な指示を読むには右にある[表示]をクリックしてください。
英語版記事を日本語へ機械翻訳したバージョン (Google翻訳)。
万が一翻訳の手がかりとして機械翻訳を用いた場合、翻訳者は必ず翻訳元原文を参照して機械翻訳の誤りを訂正し、正確な翻訳にしなければなりません。これが成されていない場合、記事は削除の方針G-3に基づき、削除される可能性があります。
信頼性が低いまたは低品質な文章を翻訳しないでください。もし可能ならば、文章を他言語版記事に示された文献で正しいかどうかを確認してください。
履歴継承を行うため、要約欄 に翻訳元となった記事のページ名・版について記述する必要があります。記述方法については、Wikipedia:翻訳のガイドライン#要約欄への記入を参照ください。
翻訳後、{{翻訳告知 |en|Brun's theorem|…}}
をノートに追加することもできます。
Wikipedia:翻訳のガイドラインに、より詳細な翻訳の手順・指針についての説明があります。
ブルン定数 (Brun's constant) は数学定数 の一つで B 2 と表記されることが多い。この数は、双子素数 の逆数 の和の極限 として定義される。すなわち、
B
2
=
(
1
3
+
1
5
)
+
(
1
5
+
1
7
)
+
(
1
11
+
1
13
)
+
(
1
17
+
1
19
)
+
(
1
29
+
1
31
)
+
⋯
{\displaystyle B_{2}=\left({\frac {1}{3}}+{\frac {1}{5}}\right)+\left({\frac {1}{5}}+{\frac {1}{7}}\right)+\left({\frac {1}{11}}+{\frac {1}{13}}\right)+\left({\frac {1}{17}}+{\frac {1}{19}}\right)+\left({\frac {1}{29}}+{\frac {1}{31}}\right)+\cdots }