線型表現とは? わかりやすく解説

表現論

(線型表現 から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/02/16 13:55 UTC 版)

表現論(ひょうげんろん、: representation theory)とは、ベクトル空間線型変換として代数構造を表現することで代数構造上の加群を研究する数学の一分野である[1]。本質的には、表現は抽象的な代数的構造を、その元と演算を行列行列の和行列の積で記述することで、より具体的にする。この記述で扱われる代数的対象には、結合代数リー代数がある。これらの中で最も優れているものは、歴史的にも最初に現れた群の表現論であり、群の演算が行列の積で、群の要素が正則行列で表現されている[2]


  1. ^ 表現論の古典的なテキストには Curtis & Reiner (1962)Serre (1977) がある。他の優れた文献には Fulton & Harris (1991)Goodman & Wallach (1998) がある。
  2. ^ 有限群の表現論の歴史は、Lam (1998) を参照。代数群やリー群については、Borel (2001) を参照。
  3. ^ a b ベクトル空間線型代数には多くの教科書がある。進んだ扱いをしている教科書は、Kostrikin & Manin (1997)を参照。
  4. ^ Sally & Vogan 1989.
  5. ^ a b Sternberg 1994.
  6. ^ Lam 1998, p. 372.
  7. ^ a b c Folland 1995.
  8. ^ Goodman & Wallach 1998, Olver 1999, Sharpe 1997.
  9. ^ Borel & Casselman 1979, Gelbert 1984.
  10. ^ See the previous footnotes and also Borel (2001).
  11. ^ a b Simson, Skowronski & Assem 2007.
  12. ^ Fulton & Harris 1991, Simson, Skowronski & Assem 2007, Humphreys 1972.
  13. ^ このことについては、標準的な教科書、たとえば、Curtis & Reiner (1962), Fulton & Harris (1991), Goodman & Wallach (1998), Gordon & Liebeck (1993), Humphreys (1972), Jantzen (2003), Knapp (2001), Serre (1977) を参照.
  14. ^ a b Serre 1977
  15. ^ 次元 0 の表現 {0} は可約でも規約でもないと考えることができる。ちょうど、数 1 が合成数でも素数でもないと考えられることと同じである。
  16. ^ Alperin 1986, Lam 1998, Serre 1977.
  17. ^ Kim 1999.
  18. ^ Serre 1977, Part III
  19. ^ Alperin 1986.
  20. ^ See Weyl 1928.
  21. ^ Wigner 1939.
  22. ^ Borel 2001.
  23. ^ a b Knapp 2001.
  24. ^ a b Peter & Weyl 1927.
  25. ^ Bargmann 1947.
  26. ^ Pontrjagin 1934.
  27. ^ a b Weyl 1946.
  28. ^ a b c Fulton & Harris 1991.
  29. ^ Humphreys 1972a.
  30. ^ Kac 1990.
  31. ^ Kac 1977.
  32. ^ Humphreys 1972b, Jantzen 2003.
  33. ^ Olver 1999.
  34. ^ Mumford, Fogarty & Kirwan 1994.
  35. ^ Sharpe 1997.
  36. ^ Borel & Casselman 1979.
  37. ^ Gelbart 1984.



線型表現

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2020/08/31 15:03 UTC 版)

二重数」の記事における「線型表現」の解説

行列用いると二重数は ε = ( 0 1 0 0 ) and a + b ε = ( a b 0 a ) {\displaystyle \varepsilon ={\begin{pmatrix}0&1\\0&0\end{pmatrix}}\quad {\text{and}}\quad a+b\varepsilon ={\begin{pmatrix}a&b\\0&a\end{pmatrix}}} と表現することができる。このとき二重数和と積は、通常の行列の和と行列の積によって計算することができ、両演算可換かつ結合的である。 これは複素数行列表現類似であり、さらに言えば二次正方行列分類英語版)に二重数概念が必要である。

※この「線型表現」の解説は、「二重数」の解説の一部です。
「線型表現」を含む「二重数」の記事については、「二重数」の概要を参照ください。

ウィキペディア小見出し辞書の「線型表現」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「線型表現」の関連用語

線型表現のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



線型表現のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの表現論 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaの二重数 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。

©2024 GRAS Group, Inc.RSS