z-依存因子とは? わかりやすく解説

z-依存因子

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2019/06/26 06:45 UTC 版)

体球調和関数」の記事における「z-依存因子」の解説

u = cos θ と書くと、ルジャンドル多項式の m 階導関数次のような u の多項式書ける。 d m P ℓ ( u ) d u m = ∑ k = 0 ⌊ ( ℓ − m ) / 2 ⌋ γ ℓ k ( m ) u ℓ − 2 k − m {\displaystyle {\frac {d^{m}P_{\ell }(u)}{du^{m}}}=\sum _{k=0}^{\left\lfloor (\ell -m)/2\right\rfloor }\gamma _{\ell k}^{(m)}\;u^{\ell -2k-m}} ここで γ ℓ k ( m ) = ( − 1 ) k 2 − ℓ ( ℓ k ) ( 2 ℓ − 2 k ℓ ) ( ℓ − 2 k ) ! ( ℓ − 2 k − m ) ! . {\displaystyle \gamma _{\ell k}^{(m)}=(-1)^{k}2^{-\ell }{\binom {\ell }{k}}{\binom {2\ell -2k}{\ell }}{\frac {(\ell -2k)!}{(\ell -2k-m)!}}.} z = r cosθ だから、この導関数には適当な r の冪乗掛ければ z のシンプルな多項式になる。 Π ℓ m ( z ) ≡ r ℓ − m d m P ℓ ( u ) d u m = ∑ k = 0 ⌊ ( ℓ − m ) / 2 ⌋ γ ℓ k ( m ) r 2 k z ℓ − 2 k − m . {\displaystyle \Pi _{\ell }^{m}(z)\equiv r^{\ell -m}{\frac {d^{m}P_{\ell }(u)}{du^{m}}}=\sum _{k=0}^{\left\lfloor (\ell -m)/2\right\rfloor }\gamma _{\ell k}^{(m)}\;r^{2k}\;z^{\ell -2k-m}.}

※この「z-依存因子」の解説は、「体球調和関数」の解説の一部です。
「z-依存因子」を含む「体球調和関数」の記事については、「体球調和関数」の概要を参照ください。

ウィキペディア小見出し辞書の「z-依存因子」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ



英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「z-依存因子」の関連用語

z-依存因子のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



z-依存因子のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaの体球調和関数 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。

©2025 GRAS Group, Inc.RSS