KAM定理
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/05/05 07:37 UTC 版)
1954年にアンドレイ・コルモゴロフによってその主張と証明のアイデアが提示され、1960年代にウラジーミル・アーノルドとユルゲン・モーザーによって証明が完遂されたKAM定理は、ポアンカレの定理と同じく可積分系に摂動が加わったときの系の挙動を述べたものである(そしてやはり小分母の問題と関係している)。KAM定理は、可積分系において存在したトーラスは摂動を受けてもその大部分が生き残り、従って近可積分系にもまたトーラスが存在することを主張する。これはある意味で摂動後の系にも運動の積分が存在することを意味するが、ただしそれを作用変数 J {\displaystyle \mathbf {J} } について解析的な関数によって表現することはできず、従ってKAM定理はポアンカレの定理と矛盾するものではない。
※この「KAM定理」の解説は、「ポアンカレの定理」の解説の一部です。
「KAM定理」を含む「ポアンカレの定理」の記事については、「ポアンカレの定理」の概要を参照ください。
- KAM定理のページへのリンク