Conformal field theoryとは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > Conformal field theoryの意味・解説 

共形場理論

(Conformal field theory から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/01/28 09:04 UTC 版)

共形場理論(きょうけいばりろん、Conformal Field Theory, CFT)とは、共形変換に対して作用が不変な場の理論である。特に、1+1次元系では複素平面をはじめとするリーマン面上での理論として記述される。

共形変換に対する不変性はウォード=高橋恒等式を要請し、これをもとにエネルギー-運動量テンソル(あるいはストレステンソル)に関する保存量が導出される。また1+1次元系においては、エネルギー-運動量テンソルを展開したものは、Virasoro代数と呼ばれる無限次元リー代数をなし、理論の中心的役割を果たす。

共形変換群は、時空間の対称性であるポアンカレ群の自然な拡張になっており、空間d-1次元+時間1次元のd次元時空間ではリー群SO(d,2)で記述される。この変換群の生成子は(d+2)(d+1)/2個あり、その内訳は以下のとおり。

  • d(d-1)/2: 空間 d-1 + 時間 1次元空間のローレンツ変換
  • d: d次元空間の並進+時間推進

※以上が、部分群としてのポアンカレ群の生成子をなす。 スケール普遍性は定義より以下の変換(ディラテーション)を示唆する。

  • 1: スケール変換(計量の目盛りの変更)

さらに強く、共形不変性を要求すると

  • d: d次元時空の特殊共形変換(反転×平行移動×反転)

が加わる。この代数SO(d,2)を共形代数(conformal algebra)と呼ぶ。

場の理論の基本的な可観測量である相関関数(場の演算子の積の真空期待値)は共形代数によって強い制限を受ける。特にユニタリな共形場の理論においては、例えばスカラー演算子の二点関数は

この項目は、自然科学に関連した書きかけの項目です。この項目を加筆・訂正などしてくださる協力者を求めていますPortal:自然科学)。


「Conformal field theory」の例文・使い方・用例・文例

Weblio日本語例文用例辞書はプログラムで機械的に例文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「Conformal field theory」の関連用語


2
36% |||||









Conformal field theoryのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



Conformal field theoryのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの共形場理論 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
Tanaka Corpusのコンテンツは、特に明示されている場合を除いて、次のライセンスに従います:
 Creative Commons Attribution (CC-BY) 2.0 France.
この対訳データはCreative Commons Attribution 3.0 Unportedでライセンスされています。
浜島書店 Catch a Wave
Copyright © 1995-2025 Hamajima Shoten, Publishers. All rights reserved.
株式会社ベネッセコーポレーション株式会社ベネッセコーポレーション
Copyright © Benesse Holdings, Inc. All rights reserved.
研究社研究社
Copyright (c) 1995-2025 Kenkyusha Co., Ltd. All rights reserved.
日本語WordNet日本語WordNet
日本語ワードネット1.1版 (C) 情報通信研究機構, 2009-2010 License All rights reserved.
WordNet 3.0 Copyright 2006 by Princeton University. All rights reserved. License
日外アソシエーツ株式会社日外アソシエーツ株式会社
Copyright (C) 1994- Nichigai Associates, Inc., All rights reserved.
「斎藤和英大辞典」斎藤秀三郎著、日外アソシエーツ辞書編集部編
EDRDGEDRDG
This page uses the JMdict dictionary files. These files are the property of the Electronic Dictionary Research and Development Group, and are used in conformance with the Group's licence.

©2025 GRAS Group, Inc.RSS