交差検証とは? わかりやすく解説

交差検証

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2025/03/09 04:29 UTC 版)

交差検証交差確認[1](こうさけんしょう、: cross-validation)とは、統計学において標本データを分割し、その一部をまず解析して、残る部分でその解析のテストを行い、解析自身の妥当性の検証・確認に当てる手法を指す[2][3][4]。データの解析(および導出された推定・統計的予測)がどれだけ本当に母集団に対処できるかを良い近似で検証・確認するための手法である。

最初に解析するデータを「訓練事例集合(training set、訓練データ)」などと呼び、他のデータを「テスト事例集合(testing set、テストデータ)」などと呼ぶ。

交差検証はSeymour Geisserが生み出した。特にそれ以上標本を集めるのが困難(危険だったり、コストがかかったり)な場合は、データから導いた推定は、交差検証などで慎重に裏付けを確認するべきである。

交差検証の主な種類

ホールドアウト検証

初期標本群から事例を無作為に選択してテスト事例を形成し、残る事例を訓練事例とする。テスト事例に使われるのは初期の標本群の3分の1以下の場合が多い[5]。ただし一般にホールドアウト検証は交差検証には分類されない。なぜなら、データを交差させることがないためである。

k-分割交差検証

観測値n=12、標本群k=3の場合のk-分割交差検証の図。データがシャッフルされた後、合計3モデルがトレーニングおよびテストされる。

英名では"

観測値n=8の場合のleave-one-out交差検証(LOOCV)の図。合計8つのモデルがトレーニングおよびテストされる。

leave-one-out cross-validation (LOOCV,一個抜き交差検証) は、標本群から1つの事例だけを抜き出してテスト事例とし、残りを訓練事例とする。これを全事例が一回ずつテスト事例となるよう検証を繰り返す。これはK-分割交差検証の K を標本サイズにした場合と同じである。ただし、LOOCV にはカーネル回帰英語版[要出典]やティホノフ正則化などと関連がある。

時系列の場合

時系列データの場合、


交差検証

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2019/12/01 22:34 UTC 版)

過剰適合」の記事における「交差検証」の解説

詳細は「交差検証」を参照 統計学場合機械学習場合も、追加技法(交差検証)を用いることによって、過剰適合に陥らず、訓練よりよい一般化となっていることを確認し、かつ示す必要がある

※この「交差検証」の解説は、「過剰適合」の解説の一部です。
「交差検証」を含む「過剰適合」の記事については、「過剰適合」の概要を参照ください。

ウィキペディア小見出し辞書の「交差検証」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「交差検証」の関連用語

交差検証のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



交差検証のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの交差検証 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaの過剰適合 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。

©2025 GRAS Group, Inc.RSS