フェイェールの定理とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > フェイェールの定理の意味・解説 

フェイェールの定理

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/07/19 07:03 UTC 版)

数学におけるフェイェールの定理(フェイェールのていり、: Fejér's theorem)とは、ハンガリー数学者リポート・フェイェールの名にちなむ定理。f:R → C周期 2π の連続函数であるなら、そのフーリエ級数部分和 (sn) のチェザロ平均の列 (σn) は、[-π,π] 上一様f に収束する。

(sn) を具体的に書くと、

となる。ただし

である。また (σn) は

であり、Fn は第 n 次のフェイェール核を表す。

より一般的な形式において、この定理は必ずしも連続でない函数に対しても応用されている (Zygmund 1968, Theorem III.3.4)。fL1(-π,π) に属するものと仮定する。f(x) の x0 における左極限および右極限 f(x0±0) が存在するか、いずれの極限も同符号の無限大であるなら、次が成り立つ:

チェザロ平均の存在あるいは無限大への発散も、この関係式は意味している。マルツェル・リースのある定理によると、フェイエールの定理は (C, 1) 平均 σn がフーリエ級数の (C, α) 平均 に変えられても、同様に成立する。

参考文献




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  
  •  フェイェールの定理のページへのリンク

辞書ショートカット

すべての辞書の索引

「フェイェールの定理」の関連用語

フェイェールの定理のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



フェイェールの定理のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのフェイェールの定理 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS