蛍光共鳴エネルギー移動 蛍光共鳴エネルギー移動の概要

蛍光共鳴エネルギー移動

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/04/13 19:40 UTC 版)

このエネルギー移動効率(FRET効率)は両分子間の距離の6乗の関数となり、距離が短いほど起こりやすくなる。またアクセプタのモル吸光係数に依存する事から励起が許容遷移である必要があり、この点でモル吸光係数に無関係なデクスター機構(電子交換に伴う)と異なる。但しフェルスター機構とデクスター機構はどちらも、ドナーの発光スペクトルとアクセプタの吸収スペクトルの重なりの大きさが大きいほど起こりやすく、よってドナーの方がアクセプタより高い励起準位を持つ。

FRETの評価手段として、ドナーのみに吸収される波長の光でドナーを励起し、アクセプタからの蛍光強度の変化を観測する方法があり、これ以外にも、ドナーの蛍光強度や蛍光寿命の変化を測定したりする方法もある。 逆に、両分子間の距離をFRET効率から評価することもできる。しかしFRET効率は、両分子の発光団の遷移双極子の配向にも影響されるため、蛍光タンパク質のように蛍光寿命時間オーダーで等方的な蛍光の放射が起こらない場合には、正確な距離の計算が困難な場合もある。

理論

FRET効率 (

CFPとYFPの相互作用により、CFPに吸収されたエネルギーがYFPに移動し、蛍光として放射される。

化学的には、両分子が共有結合によって1分子になったり、超分子複合体を形成したりすることでFRETが観測される。これを利用したものに、ホスゲン感知試薬などがある。

また特に分子生物学生物物理学で、蛋白質間相互作用の検出に応用される。例えば、注目する2種類の蛋白質にそれぞれ異なる蛍光蛋白質(GFPを改良したCFP、YFP等)でタグを付けておくと、それらが相互作用する(結合する)ことによりFRETが観測される。(相互作用による分子配置の変化が色の変化として現れる。)またリアルタイムPCRにも応用される。

このような生物学的応用では、褪色や他の蛍光物質の妨害(自家蛍光)によりFRETが観測しにくい場合もある。これを回避する方法として、蛍光フォトルミネセンス)でなく化学発光に同じ原理を応用した、生物発光共鳴エネルギー移動(Bioluminescence resonance energy transfer:BRET)もある。


  1. ^ IUPAC によれば、この現象ではエネルギーの移動時に蛍光放射が起こらないため、FRET の F は Fluorescence (蛍光)ではなく、発見者のフェルスター (Förster) の頭字とするのが正しいとされている[1][2]
  2. ^ Förster, Th. (1965). “Delocalized Excitation and Excitation Transfer”. In Oktay Sinanoglu. Modern Quantum Chemistry. Istanbul Lectures. Part III: Action of Light and Organic Crystals. 3. New York and London: Academic Press. pp. 93–137. http://www.quantum-chemistry-history.com/Sina_Dat/BOOKIstaLec/IstaLec1.htm 2011年6月22日閲覧。 


「蛍光共鳴エネルギー移動」の続きの解説一覧




蛍光共鳴エネルギー移動と同じ種類の言葉


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「蛍光共鳴エネルギー移動」の関連用語

蛍光共鳴エネルギー移動のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



蛍光共鳴エネルギー移動のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの蛍光共鳴エネルギー移動 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS