ハイブリダイゼーション ハイブリダイゼーションの概要

ハイブリダイゼーション

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/03/27 21:19 UTC 版)

ナビゲーションに移動 検索に移動

原理

核酸分子に含まれる塩基はAとTまたはU、GとCというふうに特異的(相補的)に結合する性質がある。これは塩基が形成する水素結合の数の違い(前者が2個、後者が3個)による。ハイブリダイゼーションは核酸のこの性質に基づく。同じ原理で、普通の生物のもつゲノムは互いに相補的なDNA分子が1対結合して二重らせん構造をなしている。

また核酸の生合成(DNA複製やDNAからRNAへの転写)においても、元の核酸を鋳型としてそれに相補的な核酸が作られる。この相補性こそ、生物が遺伝情報を維持する基本原理である。これらからわかる通り、同じ生物種はほぼ同じゲノム配列を持ち、ハイブリダイゼーションを用いて同じ生物種の同じ遺伝子を検出することができる。

ただし同じ遺伝子でも個体によるわずかな違い(多型)やがん細胞における突然変異・増減などがある。別の生物種となるとさらに違いが大きくなる。これらに関してもハイブリダイゼーションによる検出法がある。

基本的方法

ハイブリダイゼーション実験では、まず核酸の水素結合を切り分子を引き離す(変性)。これには加熱する方法と変性剤を用いる方法があるが、一般には加熱が用いられる。次に少しずつ温度を下げること(徐冷処理)で分子を再結合させる(アニーリング=冶金でいうところの焼きなまし)。核酸分子の解離・結合は配列に応じた特定の温度で起こる(固体融解と同じように)ので、この温度は融解温度と呼ばれる。この再結合の進み方を測定したり、あるいは特定の配列に着目してそれを検出したりする。

種類

特定の配列を持つ核酸を検出する方法としては、電気泳動によるサザンハイブリダイゼーション(DNAを対象とする)、ノーザンハイブリダイゼーション(RNA)がある。さらに多種の配列を同時に検出・定量する方法としてDNAマイクロアレイ(DNA チップ)がある。

また、細胞・組織などの標本をそのまま用いて検出する方法としてIn situ ハイブリダイゼーション、特に蛍光 in situ ハイブリダイゼーションがある。

生物では一般に、進化上の系統が近いほど対応する遺伝子の配列に相同性がある。この配列相同性を定量する方法としてDNA - DNA分子交雑法があり、これは進化系統を明らかにする方法として用いられる。

さらに、がんや先天性異常における遺伝子の増減を検出する方法として、CGH(比較ゲノムハイブリダイゼーション)がある。




「ハイブリダイゼーション」の続きの解説一覧



英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「ハイブリダイゼーション」の関連用語

ハイブリダイゼーションのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



ハイブリダイゼーションのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのハイブリダイゼーション (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS