ノンコーディングDNAとは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > ノンコーディングDNAの意味・解説 

ノンコーディングDNA

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/02/09 01:26 UTC 版)

ノンコーディングDNAncDNA)配列は、生物のDNAのうち、タンパク質配列をコードしない部分である。ノンコーディングDNAの一部は、機能的なノンコーディングRNA分子(転移RNAマイクロRNAリボソームRNAなど)に転写される。ノンコーディングDNA分画のその他の機能領域には、遺伝子発現を制御する制御配列、足場付着領域、DNA複製起点、セントロメアテロメアなどがある。ノンコーディング領域の中には、イントロン偽遺伝子トランスポゾンウイルスの断片など、ほとんどが非機能的と思われるものもある。


  1. ^ a b “The ingenuity of bacterial genomes”. Annual Review of Microbiology 74: 815–834. (2020). doi:10.1146/annurev-micro-020518-115822. PMID 32692614. 
  2. ^ a b “Human protein-coding genes and gene feature statistics in 2019”. BMC Research Notes 12 (1): 315. (2019). doi:10.1186/s13104-019-4343-8. PMC 6549324. PMID 31164174. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6549324/. 
  3. ^ “Reflections on the HUPO Human Proteome Project, the Flagship Project of the Human Proteome Organization, at 10 Years”. Molecular & Cellular Proteomics 20: 100062. (2021). doi:10.1016/j.mcpro.2021.100062. PMC 8058560. PMID 33640492. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8058560/. 
  4. ^ “The genetic organization of chromosomes”. Annual Review of Genetics 5: 237–256. (1971). doi:10.1146/annurev.ge.05.120171.001321. PMID 16097657. 
  5. ^ a b T Ryan Gregory (2005). “Synergy between sequence and size in large-scale genomics”. Nat Rev Genet. 6 (9): 699-708. doi:10.1038/nrg1674. PMID 16151375. 
  6. ^ “What's in a genome? The C-value enigma and the evolution of eukaryotic genome content”. Phil. Trans. R. Soc. B 370 (1678): 20140331. (2015). doi:10.1098/rstb.2014.0331. PMC 4571570. PMID 26323762. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4571570/. 
  7. ^ “The g-value paradox”. Evolution and Development 4 (2): 73–75. (2002). doi:10.1046/j.1525-142X.2002.01069.x. PMID 12004964. 
  8. ^ “The modulation of DNA content: proximate causes and ultimate consequences”. Genome Research 9 (4): 317–324. (April 1999). doi:10.1101/gr.9.4.317. PMID 10207154. 
  9. ^ “Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes”. Science 297 (5585): 1301–1310. (2002). Bibcode2002Sci...297.1301A. doi:10.1126/science.1072104. PMID 12142439. 
  10. ^ “So much "junk" DNA in our genome”. Brookhaven Symposia in Biology 23: 366–370. (1972). OCLC 101819442. PMID 5065367. 
  11. ^ a b c d e “Architecture and evolution of a minute plant genome”. Nature 498 (7452): 94–98. (2013). Bibcode2013Natur.498...94I. doi:10.1038/nature12132. PMC 4972453. PMID 23665961. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4972453/. 
  12. ^ a b c d e “Long-read sequencing uncovers the adaptive topography of a carnivorous plant genome”. Proceedings of the National Academy of Sciences 114 (22): E4435–E4441. (2017). Bibcode2017PNAS..114E4435L. doi:10.1073/pnas.1702072114. PMC 5465930. PMID 28507139. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5465930/. 
  13. ^ “Genetic Tidying Up Made Humped Bladderworts Into Carnivorous Plants”. New York Times. (2017年5月19日). https://www.nytimes.com/2017/05/19/science/humped-bladderwort-carnivorous-plant-genome.html 2022年5月30日閲覧。 
  14. ^ Hsu C, and Stolte D (13 May 2013). "Carnivorous Plant Throws Out 'Junk' DNA" (Press release). Tucson, AZ, USA: University of Arizona. 2022年5月29日閲覧
  15. ^ Making sense of genes. Cambridge UK: Cambridge University Press. (2017). ISBN 978-1-107-12813-2 [要ページ番号]
  16. ^ Kresge, Nicole; Simoni, Robert D.; Hill, Robert L. (October 7, 2005). “The Discovery of tRNA by Paul C. Zamecnik”. Journal of Biological Chemistry 280 (40): e37–e39. doi:10.1016/S0021-9258(20)79029-0. https://www.jbc.org/article/S0021-9258(20)79029-0/abstract. 
  17. ^ D DANON, Y MARIKOVSKY, U Z LITTAUER (1961-02). “A comparative electron microscopical study of RNA from different sources”. J Biophys Biochem Cytol. 9 (2): 253-61. doi:10.1083/jcb.9.2.253. PMC 2225006. PMID 13719673. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2225006/. 
  18. ^ “The Noncoding RNA Revolution - Trashing Old Rules to Forge New Ones”. Cell 157 (1): 77–94. (2014). doi:10.1016/j.cell.2014.03.008. PMID 24679528. 
  19. ^ “Congruent evolution of different classes of non-coding DNA in prokaryotic genomes”. Nucleic Acids Research 30 (19): 4264–4271. (October 2002). doi:10.1093/nar/gkf549. PMC 140549. PMID 12364605. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC140549/. 
  20. ^ “Congruent evolution of different classes of non-coding DNA in prokaryotic genomes”. Nucleic Acids Research 30 (19): 4264–4271. (October 2002). doi:10.1093/nar/gkf549. PMC 140549. PMID 12364605. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC140549/. 
  21. ^ “Genome-Wide Analysis of Human Long Noncoding RNAs: A Provocative Review”. Annual Review of Genomics and Human Genetics 23: 153–172. (2022). doi:10.1146/annurev-genom-112921-123710. hdl:20.500.11820/ede40d70-b99c-42b0-a378-3b9b7b256a1b. PMID 35395170. 
  22. ^ “GENCODE: the reference human genome annotation for The ENCODE Project”. Genome Research 22 (9): 1760–1774. (2012). doi:10.1101/gr.135350.111. PMC 3431492. PMID 22955987. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3431492/. 
  23. ^ “The Long Road to Understanding RNAPII Transcription Initiation and Related Syndromes”. Annual Review of Biochemistry 90: 193–219. (2021). doi:10.1146/annurev-biochem-090220-112253. PMID 34153211. 
  24. ^ “Genomic views of distant-acting enhancers”. Nature 461 (7261): 199–205. (September 2009). Bibcode2009Natur.461..199V. doi:10.1038/nature08451. PMC 2923221. PMID 19741700. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2923221/. 
  25. ^ 岩切 淳一「大規模配列データにより加速するノンコーディングRNA研究」『JSBi Bioinformatics Review』第3巻第1号、2022年6月、1–10頁、doi:10.11234/jsbibr.2022.primer1 
  26. ^ Molecular Biology of the Cell, 3rd edition. London, UK: Garland Publishing Inc.. (1994) [要ページ番号]
  27. ^ Genes VIII. Upper Saddle River, NJ, USA: Pearson/Prentice Hall. (2004) [要ページ番号]
  28. ^ Principles of Biochemistry Fifth Edition. Upper Saddle River, NJ, USA: Pearson. (2012) [要ページ番号]
  29. ^ “DNA replication origins”. Cold Spring Harbor Perspectives in Biology 5 (10): a010116. (2013). doi:10.1101/cshperspect.a010116. PMC 3783049. PMID 23838439. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3783049/. 
  30. ^ “The hunt for origins of DNA replication in multicellular eukaryotes”. F1000Prime Reports 7: 30. (2015). doi:10.12703/P7-30. PMC 4371235. PMID 25926981. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4371235/. 
  31. ^ “DNA replication origins—where do we begin?”. Genes & Development 30 (15): 1683–1697. (2016). doi:10.1101/gad.285114.116. PMC 5002974. PMID 27542827. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5002974/. 
  32. ^ “Analytical Biases Associated with GC-Content in Molecular Evolution”. Frontiers in Genetics 8: 16. (2017). doi:10.3389/fgene.2017.00016. PMC 5309256. PMID 28261263. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5309256/. 
  33. ^ “Complete genomic and epigenetic maps of human centromeres”. Science 376 (6588): 56. (2021). doi:10.1126/science.abl4178. PMC 9233505. PMID 35357911. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9233505/. 
  34. ^ “Centromeric satellite DNAs: hidden sequence variation in the human population”. Genes 10 (5): 353. (2019). doi:10.3390/genes10050352. PMC 6562703. PMID 31072070. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6562703/. 
  35. ^ “The unusual telomeres of Drosophila”. Trends Genet. 11 (2): 58-62. (Feb 1995). doi:10.1016/s0168-9525(00)88998-2. PMID 7716808. 
  36. ^ “Telomeric noncoding RNA: telomeric repeat-containing RNA in telomere biology”. Wiley Interdisciplinary Reviews. RNA 5 (3): 407–419. (May 2014). doi:10.1002/wrna.1220. PMID 24523222. 
  37. ^ “The self-organizing genome: Principles of genome architecture and function”. Cell 183 (1): 28–45. (2020). doi:10.1016/j.cell.2020.09.014. PMC 7541718. PMID 32976797. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7541718/. 
  38. ^ “Re-recognition of pseudogenes: From molecular to clinical applications”. Theranostics. 10 (4): 1479–1499. (2020-01-01). doi:10.7150/thno.40659. PMC 6993246. PMID 32042317. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6993246/. 
  39. ^ “Vertebrate pseudogenes”. FEBS Lett. 25 (468): 109-14.. (2000-02-25). doi:10.1016/s0014-5793(00)01199-6. PMID 10692568. 
  40. ^ “Studying genomes through the aeons: protein families, pseudogenes and proteome evolution”. J Mol Biol. 318 (5): 1155-74. (2002-05-17). doi:10.1016/s0022-2836(02)00109-2. PMID 12083509. 
  41. ^ “Comprehensive analysis of pseudogenes in prokaryotes: widespread gene decay and failure of putative horizontally transferred genes”. Genome Biol. 5 (9). (2004-08-26). doi:10.1186/gb-2004-5-9-r64. PMC 522871. PMID 15345048. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC522871/. 
  42. ^ “Pseudogene evolution and natural selection for a compact genome”. J Hered. 91 (3): 221-7. (2000). doi:10.1093/jhered/91.3.221.. PMID 10833048. 
  43. ^ “A pseudogene structure in 5S DNA of Xenopus laevis”. Cell 12 (1): 109-120. (1977-07). doi:10.1016/0092-8674(77)90189-1. PMID 561661. 
  44. ^ “Gene arrangement and organization in a approximately 76 kb fragment encompassing the oriC region of the chromosome of Mycobacterium leprae”. Microbiology (Reading). 142 (11): 3147-61. (1996-11). doi:10.1099/13500872-142-11-3147. PMID 8969512. 
  45. ^ “Structural analysis of a hmg-coA-reductase pseudogene: insights into evolutionary processes affecting the hmgr gene family in allotetraploid cotton (Gossypium hirsutum L.)”. Curr Genet. 34 (4): 241-9. (1998-10). doi:10.1007/s002940050393. PMID 9799357. 
  46. ^ “Molecular evolution of the Cecropin multigene family in Drosophila. functional genes vs. pseudogenes”. Genetics. 150 (1): 157-71. (1998-09). doi:10.1093/genetics/150.1.157. PMC 1460299. PMID 9725836. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1460299/. 
  47. ^ Ensemble Human reference genome GRCh38.p13”. 2024年1月16日閲覧。
  48. ^ “Are human translated pseudogenes functional?”. Molecular Biology and Evolution 33 (3): 755–760. (2015). doi:10.1093/molbev/msv268. PMC 5009996. PMID 26589994. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5009996/. 
  49. ^ “Pseudogenes are not pseudo any more.”. RNA Biology 9 (1): 27–32. (2012). doi:10.4161/rna.9.1.18277. PMID 22258143. 
  50. ^ Roy-Engel, A. M; Carroll, M. L; Vogel, E; Garber, R. K; Nguyen, S. V; Salem, A. H; Batzer, M. A; Deininger, P. L (2001). “Alu insertion polymorphisms for the study of human genomic diversity”. Genetics 159 (1): 279–90. doi:10.1093/genetics/159.1.279. PMC 1461783. PMID 11560904. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1461783/. 
  51. ^ “Genomic gems: SINE RNAs regulate mRNA production”. Current Opinion in Genetics & Development 20 (2): 149–155. (April 2010). doi:10.1016/j.gde.2010.01.004. PMC 2859989. PMID 20176473. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2859989/. 
  52. ^ “Useful 'junk': Alu RNAs in the human transcriptome”. Cellular and Molecular Life Sciences 64 (14): 1793–1800. (July 2007). doi:10.1007/s00018-007-7084-0. PMID 17514354. https://archive-ouverte.unige.ch/unige:17489. 
  53. ^ “InvAluable junk: the cellular impact and function of Alu and B2 RNAs”. IUBMB Life 61 (8): 831–837. (August 2009). doi:10.1002/iub.227. PMC 4049031. PMID 19621349. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4049031/. 
  54. ^ “Human endogenous retroviruses: transposable elements with potential?”. Clinical and Experimental Immunology 138 (1): 1–9. (October 2004). doi:10.1111/j.1365-2249.2004.02592.x. PMC 1809191. PMID 15373898. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1809191/. 
  55. ^ “Initial sequencing and analysis of the human genome”. Nature 409 (6822): 860–921. (February 2001). Bibcode2001Natur.409..860L. doi:10.1038/35057062. hdl:2027.42/62798. PMID 11237011. 
  56. ^ “Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice”. Genome Research 16 (10): 1262–1269. (October 2006). doi:10.1101/gr.5290206. PMC 1581435. PMID 16963705. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1581435/. 
  57. ^ “Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium”. Genome Research 16 (10): 1252–1261. (October 2006). doi:10.1101/gr.5282906. PMC 1581434. PMID 16954538. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1581434/. 
  58. ^ “Abundant contribution of short tandem repeats to gene expression variation in humans”. Nature Genetics 48 (1): 22–29. (2016). doi:10.1038/ng.3461. PMC 4909355. PMID 26642241. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4909355/. 
  59. ^ “High-resolution comparative analysis of great ape genomes”. Science 360 (6393): 1085. (2018). doi:10.1126/science.aar6343. PMC 6178954. PMID 29880660. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6178954/. 
  60. ^ National Commission on the Future of DNA Evidence (2002年7月). “Using DNA to Solve Cold Cases”. アメリカ合衆国司法省. 2024年1月17日閲覧。
  61. ^ “Factors behind junk DNA in bacteria”. Genes 3 (4): 634–650. (2012). doi:10.3390/genes3040634. PMC 3899985. PMID 24705080. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3899985/. 
  62. ^ Brandes, Nadav; Linial, Michal (2016). “Gene overlapping and size constraints in the viral world” (英語). Biology Direct 11 (1): 26. doi:10.1186/s13062-016-0128-3. ISSN 1745-6150. PMC 4875738. PMID 27209091. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4875738/. 
  63. ^ “The case for junk DNA”. PLOS Genetics 10 (5): e1004351. (May 2014). doi:10.1371/journal.pgen.1004351. PMC 4014423. PMID 24809441. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4014423/. 
  64. ^ Morange, Michel (2014). “Genome as a Multipurpose Structure Built by Evolution”. Perspectives in Biology and Medicine 57 (1): 162–171. doi:10.1353/pbm.2014.0008. PMID 25345709. https://hal.archives-ouvertes.fr/hal-01480552/file/ARTICLE%20ENCODE%20MM%2070114%20corrige%C2%A6%C3%BC.pdf. 
  65. ^ “No Gene in the Genome Makes Sense Except in the Light of Evolution.”. Annual Review of Genomics and Human Genetics 25: 71–92. (2014). doi:10.1146/annurev-genom-090413-025621. PMID 24773316. 
  66. ^ “The advantages and limitations of trait analysis with GWAS: a review”. Plant Methods 9: 29. (2013). doi:10.1186/1746-4811-9-29. PMC 3750305. PMID 23876160. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3750305/. 
  67. ^ a b “Genomewide association studies and assessment of the risk of disease”. The New England Journal of Medicine 363 (2): 166–76. (July 2010). doi:10.1056/NEJMra0905980. PMID 20647212. 
  68. ^ “10 Years of GWAS Discovery: Biology, Function, and Translation”. American Journal of Human Genetics 101 (1): 5–22. (2017). doi:10.1016/j.ajhg.2017.06.005. PMC 5501872. PMID 28686856. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5501872/. 
  69. ^ “The Post-GWAS Era: From Association to Function”. American Journal of Human Genetics 102 (5): 717–730. (2018). doi:10.1016/j.ajhg.2018.04.002. PMC 5986732. PMID 29727686. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5986732/. 
  70. ^ “Replicability and Prediction: Lessons and Challenges from GWAS”. Trends in Genetics 34 (7): 504–517. (2018). doi:10.1016/j.tig.2018.03.005. PMC 6003860. PMID 29716745. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6003860/. 


「ノンコーディングDNA」の続きの解説一覧



英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  
  •  ノンコーディングDNAのページへのリンク

辞書ショートカット

すべての辞書の索引

「ノンコーディングDNA」の関連用語

ノンコーディングDNAのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



ノンコーディングDNAのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのノンコーディングDNA (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS