シュードウリジン さまざまなRNAへの修飾と影響

Weblio 辞書 > 辞書・百科事典 > 百科事典 > シュードウリジンの解説 > さまざまなRNAへの修飾と影響 

シュードウリジン

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/03/16 09:11 UTC 版)

さまざまなRNAへの修飾と影響

tRNA

出芽酵母S. cerevisiaeのtRNAAla。シュードウリジンはΨで示されている。

ΨはtRNAに普遍的に存在し、tRNAに共通した構造モチーフの形成を促進する。そうした構造モチーフの1つがTΨCステムループであり、Ψ55が関係している。ΨはDステムとアンチコドンステムループにも一般的にみられる。各構造モチーフにおいて、Ψの独特な物理化学的な性質は標準的なUでは不可能な構造安定化を可能にしている[3]

翻訳時に、ΨはtRNA分子とrRNA、mRNAとの相互作用を調整する。Ψや他の修飾ヌクレオチドは、それらが存在するドメインの局所的構造に影響を与えるが、RNA分子全体のフォールディングに影響を与えることはない。アンチコドンステムループ(ASL)では、ΨはtRNAがリボソームに適切に結合するために重要であるようである。ΨはASLの動的な構造を安定化し、30Sリボソームへのより強固な結合を促進する。ASLのコンフォメーションの安定化は、翻訳時の適切なアンチコドン-コドン対合の維持を助ける。この安定性は、ペプチド結合の形成速度を低下させ、不正確なコドン-アンチコドン対合を排除するための時間を長くすることで、翻訳の正確性を向上させている可能性がある。しかしながら、tRNAのシュードウリジル化は細胞の生存に必須ではなく、アミノアシル化にも通常は必要とされない[3]

mRNA

Ψは、タンパク質合成の鋳型となるmRNAにも存在している。mRNA中のΨ残基は終止コドンUAA、UGA、UAGのコーディング特性に影響を与える。これらの終止コドンのU→Ψへの修飾は、U→Cへの変異と同様に、ナンセンスサプレッション英語版を促進する[8]

rRNA

Ψは、全ドメインの生物とその細胞小器官のリボソームの大小のサブユニットに存在する。リボソームでは、Ψ残基はドメインII、IV、Vに密集しており、RNA-RNA間またはRNA-タンパク質間の相互作用を安定化している。Ψによってもたらされる安定性は、rRNAのフォールディングとリボソームの組み立てを補助している可能性がある。Ψは局所構造の安定性にも影響を与えている可能性があり、翻訳時のデコーディングの速度と正確性、校正機能に影響を与える[3]

snRNA

Ψは、真核生物の主要なスプライセオソームのsnRNAにも存在している。snRNA中のΨ残基は多くの場合系統学的に保存されているが、分類群や生物種によって多少の差異が存在する。snRNA中のΨ残基は、通常RNA-RNA間またはRNA-タンパク質間の相互作用に関与する領域に位置しており、スプライセオソームの組み立てや機能に関与する。snRNA中のΨ残基は、スプライセオソームの適切なフォールディングや組み立て位に寄与し、pre-mRNAのプロセシングに必要不可欠である[3]


  1. ^ IUPAC-IUB Commission on Biochemical Nomenclature (1970). “Abbreviations and symbols for nucleic acids, polynucleotides, and their constituents”. Biochemistry 9 (20): 4022–4027. doi:10.1021/bi00822a023. PMC 1179624. PMID 5499957. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1179624/. 
  2. ^ a b c Hamma, Tomoko; Ferré-D'Amaré, Adrian R. (November 2006). “Pseudouridine Synthases”. Chemistry & Biology 13 (11): 1125–1135. doi:10.1016/j.chembiol.2006.09.009. ISSN 1074-5521. PMID 17113994. 
  3. ^ a b c d e f g Gray, Michael Charette, Michael W. (2000-05-01). “Pseudouridine in RNA: What, Where, How, and Why”. IUBMB Life 49 (5): 341–351. doi:10.1080/152165400410182. ISSN 1521-6543. PMID 10902565. 
  4. ^ “The spliced leader-associated RNA is a trypanosome-specific sn(o) RNA that has the potential to guide pseudouridine formation on the SL RNA”. RNA 8 (2): 237–246. (2002). doi:10.1017/S1355838202018290. PMC 1370245. PMID 11911368. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1370245/. 
  5. ^ Ge, Junhui; Yu, Yi-Tao (April 2013). “RNA pseudouridylation: new insights into an old modification”. Trends in Biochemical Sciences 38 (4): 210–218. doi:10.1016/j.tibs.2013.01.002. ISSN 0968-0004. PMC 3608706. PMID 23391857. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3608706/. 
  6. ^ a b c d e f g h i j k l Rintala-Dempsey, Anne C.; Kothe, Ute (2017-01-03). “Eukaryotic stand-alone pseudouridine synthases – RNA modifying enzymes and emerging regulators of gene expression?”. RNA Biology 14 (9): 1185–1196. doi:10.1080/15476286.2016.1276150. ISSN 1547-6286. PMC 5699540. PMID 28045575. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5699540/. 
  7. ^ Wu, Guowei; Radwan, Mohamed K.; Xiao, Mu; Adachi, Hironori; Fan, Jason; Yu, Yi-Tao (2016-06-07). “TheTORsignaling pathway regulates starvation-induced pseudouridylation of yeast U2 snRNA”. RNA 22 (8): 1146–1152. doi:10.1261/rna.056796.116. ISSN 1355-8382. PMC 4931107. PMID 27268497. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4931107/. 
  8. ^ Adachi, Hironori; De Zoysa, Meemanage D.; Yu, Yi-Tao (March 2019). “Post-transcriptional pseudouridylation in mRNA as well as in some major types of noncoding RNAs”. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 1862 (3): 230–239. doi:10.1016/j.bbagrm.2018.11.002. ISSN 1874-9399. PMC 6401265. PMID 30414851. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6401265/. 
  9. ^ a b Penzo, M.; Guerrieri, A. N.; Zacchini, F.; Treré, D.; Montanaro, L. (2017-11-01). “RNA Pseudouridylation in Physiology and Medicine: For Better and for Worse”. Genes 8 (11): 301. doi:10.3390/genes8110301. ISSN 2073-4425. PMC 5704214. PMID 29104216. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5704214/. 
  10. ^ Keffer-Wilkes, Laura Carole; Veerareddygari, Govardhan Reddy; Kothe, Ute (2016-11-14). “RNA modification enzyme TruB is a tRNA chaperone”. Proceedings of the National Academy of Sciences 113 (50): 14306–14311. doi:10.1073/pnas.1607512113. ISSN 0027-8424. PMC 5167154. PMID 27849601. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5167154/. 
  11. ^ Xu, J.; Gu, A. Y.; Thumati, N. R.; Wong JMY (2017-09-05). “Quantification of Pseudouridine Levels in Cellular RNA Pools with a Modified HPLC-UV Assay”. Genes 8 (9): 219. doi:10.3390/genes8090219. ISSN 2073-4425. PMC 5615352. PMID 28872587. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5615352/. 
  12. ^ Durairaj, Anita; Limbach, Patrick A. (2008-04-07). “Improving CMC-derivatization of pseudouridine in RNA for mass spectrometric detection”. Analytica Chimica Acta 612 (2): 173–181. doi:10.1016/j.aca.2008.02.026. ISSN 1873-4324. PMC 2424252. PMID 18358863. https://www.ncbi.nlm.nih.gov/pubmed/18358863. 
  13. ^ Kalsotra, Auinash (2016-11-02). Faculty of 1000 evaluation for Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA.. doi:10.3410/f.718875945.793524920. 
  14. ^ a b Zhao, Yang; Karijolich, John; Glaunsinger, Britt; Zhou, Qiang (October 2016). “Pseudouridylation of 7 SK sn RNA promotes 7 SK sn RNP formation to suppress HIV ‐1 transcription and escape from latency”. EMBO Reports 17 (10): 1441–1451. doi:10.15252/embr.201642682. ISSN 1469-221X. PMC 5048380. PMID 27558685. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5048380/. 





英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「シュードウリジン」の関連用語

シュードウリジンのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



シュードウリジンのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのシュードウリジン (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS