彩色数 (結び目理論)とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 彩色数 (結び目理論)の意味・解説 

彩色数 (結び目理論)

(Tricolorability から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2013/03/04 04:13 UTC 版)

三葉結び目は3彩色可能である

彩色数(さいしょくすう)とは、位相幾何学の一分野である結び目理論において、結び目や絡み目の不変量のひとつである。

目次

彩色可能性

3彩色可能性

結び目(絡み目)の射影図において、ある交点から別の交点までつながった一部分で、両端の交点では下を通るが途中では交点の(上を通ったとしても)下を通らない場合にその部分をと呼ぶ。ただし自明な結び目の射影図も道とする。 このように道という語を定義したときに、射影図の各交点に3つの道が集まることになる(ただしそのうち2個は重複している可能性もある)。 ここで以下の2つの条件をともに満たすように結び目(絡み目)の射影図の道を3つ以下の異なる色で彩色できるとき、その結び目(絡み目)は3彩色可能であるという。

  1. 任意の交点において、その交点に集まる3つの道は全て同じ色に塗られている、または3色の異なる色で塗られている
  2. 射影図全体に2色以上の色が使われている

たとえば三葉結び目、2成分の自明な絡み目が3彩色可能であるのに対して8の字結び目、ホップ絡み目、ホワイトヘッド絡み目は3彩色不可能である。3彩色可能性はライデマイスター移動によって変化しないため、結び目不変量となる。よって三葉結び目が解けていないこと、三葉結び目と8の字結び目が異なる結び目であること、ホップ絡み目やホワイトヘッド絡み目が自明な2成分の絡み目でないことがわかる。[1][2]

上の2つの条件のうち、2番目の条件を外すと全ての結び目・絡み目の射影図が3彩色可能となるが、このときの彩色の方法の総数を3彩色数という[3]。これも結び目の不変量となる[4]。例えば自明な結び目の3彩色数は3、三葉結び目の3彩色数は9である。

p彩色可能性

前述の3彩色可能性を拡張し、以下のようにして素数 p に対してp彩色可能性を定義することができる[5]

まず絡み目の射影図の道に対して、(3つの色の代わりに)0以上 p-1 以下のp種類の自然数を対応させることにする。このとき、前述のように各交点には3つの道が集まっているため、上側を通る道につける自然数をx、下側を通る2つの道につける自然数をy,zとしたとき、

[注 1]

が各交点ごとに成立するように自然数を振る。この条件を満たしなおかつ射影図全体で2種類以上の自然数がふられているような彩色ができたときに、その射影図はp彩色可能であると定義する。

3彩色可能性と同様に、p彩色可能性も絡み目の不変量となる。

彩色数

絡み目はいくつかの異なるpに対してp彩色可能性を満たすことがありうる。そこで、絡み目がp彩色可能となるような最小のpをその結び目の彩色数と定義する。彩色数は結び目の不変量となる。[6]

脚注

  1. ^ 記号modの意味は合同式を参照。

参考文献

  1. ^ 『結び目理論とその応用』59-60頁。
  2. ^ 『結び目の数学』23-27頁。
  3. ^ 『結び目と量子群』35頁。
  4. ^ 『結び目と量子群』38頁。
  5. ^ 『結び目理論とその応用』61頁。
  6. ^ 『結び目理論とその応用』62頁。



英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「彩色数 (結び目理論)」の関連用語

彩色数 (結び目理論)のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



彩色数 (結び目理論)のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの彩色数 (結び目理論) (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS