パーセバルの定理
パーセバルの定理(パーセバルのていり、英: Parseval's theorem)[1][2]とは、フーリエ変換がユニタリであるという結果を一般に指す。大まかに言えば、関数の平方の総和(あるいは積分)が、そのフーリエ変換の平方の総和(あるいは積分)と等しいということである。フランスの数学者マルク=アントワーヌ・パーシバルの1799年の級数に関する定理が起源であり、この定理は後にフーリエ級数に応用されるようになった。レイリー卿ジョン・ウィリアム・ストラットに因んで、レイリーのエネルギー定理(Rayleigh's energy theorem, Rayleigh's Identity)とも呼ばれる[3]。
また、特に物理学や工学分野では、任意のフーリエ変換のユニタリ性を指してパーセバルの定理と呼ぶことが多いが、この性質の最も一般的な形は正確にはプランシュレルの定理と呼ばれる[4]。
パーセバルの定理の主張
A(x) と B(x) を(ルベーグ測度に関して)閉区間[0,2π]で二乗可積分な R 上の周期 2π の複素数値関数とする。それらのフーリエ級数をそれぞれ
- Parseval's theoremのページへのリンク