Local fieldとは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > Local fieldの意味・解説 

局所体

(Local field から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/11/20 14:17 UTC 版)

局所体(きょくしょたい、: local field)とは、離散付値に対して完備であり、剰余体有限体である付値体のことである。

局所体の定義としては、上に挙げたもの以外にもいくつかあり、そのうちの代表的なものを挙げる。これらは互いに同値な定義である。

  1. 局所体とは、非アルキメデス付値に対して完備であり、付値環コンパクト[要曖昧さ回避]である付値体のことである。
  2. 局所体とは、自明ではない乗法付値に対して連結ではない局所コンパクトな付値体のことである。
  3. 局所体とは、p進体もしくは有限体係数の1変数ベキ級数体の有限次代数拡大体と付値体として同型[1]な付値体のことである。

応用上、局所体をp進体もしくは有限体係数の1変数ベキ級数体の有限次代数拡大体に限定することも多い。 その場合、局所体を

  • 大域体(代数体もしくは有限体上の1変数代数関数体)の離散付値による完備化

と定義されることもある。このとき、大域体から局所体を得ることを局所化という。

上記の定義の他に、実数体や複素数体も局所体に含めることもある。これらが

  • アルキメデス付値に対して完備である。
  • 連結である局所コンパクトな付値体である。
  • 代数体のアルキメデス付値による完備化である。

と、上記局所体の定義とよく似た性質を持っているからである。

この場合、非アルキメデス付値による局所体を非アルキメデス的局所体、アルキメデス付値による局所体をアルキメデス的局所体という。

しかし実数体(複素数体)と p進体または1変数ベキ級数体とでは性質の異なる部分が多いので、ここでは当初の定義通り、特に断らない限り局所体といった場合、実数体や複素数体は含まれないとする。しかし、局所体との類似点や相違点を知るために、局所体の性質に対応する実数体や複素数体の結果も記述することにする。

なお、この項では局所体としての性質を記述し、p進体もしくはベキ級数体固有の性質については述べない。それらに対する詳細は個々の記事を参照のこと。

位相的性質

局所体を特徴付ける位相的性質を述べる。

  • 局所体 K の付値環はコンパクトであり、K のコンパクトな部分環は付値環の部分環である。
  • 付値環の任意のイデアルはコンパクトな開集合である。
  • 乗法群
国立図書館 その他

「local field」の例文・使い方・用例・文例

Weblio日本語例文用例辞書はプログラムで機械的に例文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「Local field」の関連用語

Local fieldのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



Local fieldのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの局所体 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
Tanaka Corpusのコンテンツは、特に明示されている場合を除いて、次のライセンスに従います:
 Creative Commons Attribution (CC-BY) 2.0 France.
この対訳データはCreative Commons Attribution 3.0 Unportedでライセンスされています。
浜島書店 Catch a Wave
Copyright © 1995-2025 Hamajima Shoten, Publishers. All rights reserved.
株式会社ベネッセコーポレーション株式会社ベネッセコーポレーション
Copyright © Benesse Holdings, Inc. All rights reserved.
研究社研究社
Copyright (c) 1995-2025 Kenkyusha Co., Ltd. All rights reserved.
日本語WordNet日本語WordNet
日本語ワードネット1.1版 (C) 情報通信研究機構, 2009-2010 License All rights reserved.
WordNet 3.0 Copyright 2006 by Princeton University. All rights reserved. License
日外アソシエーツ株式会社日外アソシエーツ株式会社
Copyright (C) 1994- Nichigai Associates, Inc., All rights reserved.
「斎藤和英大辞典」斎藤秀三郎著、日外アソシエーツ辞書編集部編
EDRDGEDRDG
This page uses the JMdict dictionary files. These files are the property of the Electronic Dictionary Research and Development Group, and are used in conformance with the Group's licence.

©2025 GRAS Group, Inc.RSS