Lobatto IIIA法とは? わかりやすく解説

Lobatto IIIA法

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/03/11 04:08 UTC 版)

ルンゲ=クッタ法のリスト」の記事における「Lobatto IIIA法」の解説

Lobatto IIIA法 はコロケーション法である。 2次方法は陰的台形公式として知られ、以下の配列与えられる0 0 0 1 1 / 2 1 / 2 1 / 2 1 / 2 {\displaystyle {\begin{array}{c|cc}0&0&0\\1&1/2&1/2\\\hline &1/2&1/2\\\end{array}}} さらに4次の方法は以下の配列与えられる0 0 0 0 1 / 2 5 / 24 1 / 3 − 1 / 24 1 1 / 6 2 / 3 1 / 6 1 / 6 2 / 3 1 / 6 {\displaystyle {\begin{array}{c|ccc}0&0&0&0\\1/2&5/24&1/3&-1/24\\1&1/6&2/3&1/6\\\hline &1/6&2/3&1/6\\\end{array}}} これらの方法はどれもA-安定であるが、L-安定やB-安定ではない。

※この「Lobatto IIIA法」の解説は、「ルンゲ=クッタ法のリスト」の解説の一部です。
「Lobatto IIIA法」を含む「ルンゲ=クッタ法のリスト」の記事については、「ルンゲ=クッタ法のリスト」の概要を参照ください。

ウィキペディア小見出し辞書の「Lobatto IIIA法」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ



英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「Lobatto IIIA法」の関連用語

Lobatto IIIA法のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



Lobatto IIIA法のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaのルンゲ=クッタ法のリスト (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。

©2025 GRAS Group, Inc.RSS