Fundamental solutionとは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > Fundamental solutionの意味・解説 

基本解

(Fundamental solution から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/04/24 04:42 UTC 版)

数学の分野において、線型偏微分作用素に対する基本解(きほんかい、: fundamental solution)とは、旧来よりグリーン関数と呼ばれている概念の、シュワルツ超函数論を用いた定式化である。ディラックのデルタ関数 δ(x) を用いて、作用素 L に対する基本解 F は非斉次方程式

LF = δ(x)

の解と定められる。ここで F は、特に理由が無ければシュワルツ超函数(弱い意味での解)として存在すればよい(真の解であることまでは要求されない)。

この概念は、二次元および三次元のラプラシアンに対して長く知られたものであった。任意の次元のラプラシアンに対しては、リース・マルツェルによって調べられた。定数係数の任意の作用素に対する基本解の存在は、ベルナール・マルグランジュ英語版レオン・エーレンプライス英語版によって示された。これは右辺を任意にとった方程式を解くうえで、畳み込みを用いる方法が直接的に結び付く、最も重要なケースであった。

微分作用素 L




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「Fundamental solution」の関連用語

Fundamental solutionのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



Fundamental solutionのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの基本解 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS