フロイデンタールのスペクトル定理とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > フロイデンタールのスペクトル定理の意味・解説 

フロイデンタールのスペクトル定理

(Freudenthal spectral theorem から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/10/15 05:29 UTC 版)

ナビゲーションに移動 検索に移動

数学におけるフロイデンタールのスペクトル定理(フロイデンタールのスペクトルていり、: Freudenthal spectral theorem)とは、1936年にハンス・フロイデンタールによって証明されたリース空間論の一結果である。大まかに言うと、単項射影性質(principal projection property; 主射影性質)を持つリース空間内の一つの正元によって支配される任意の元は、ある種の単関数により一様に近似できる、ということが述べられている定理である。

数多くの有名な結果が、フロイデンタールのスペクトル定理から得られる。例えば、有名なラドン=ニコディムの定理ポアソンの公式の正当性、正規作用素の理論によるスペクトル定理などは、フロイデンタールのスペクトル定理の特別な場合として従うことが示される。

定理の主張

e はリース空間 E に属する任意の正元とする。E の正元 pe の成分 (component) であるとは、p ⊥ (ep) が成立することを言う[1]p1, p2, …, pn が互いに素な e の成分であるとき、p1, p2, …, pn の任意の実線型結合を e-単関数と呼ぶ。

定理 (Freudenthal)[2]
単項射影性質を持つリース空間 EE の任意の正元 e について、e の生成する主イデアル内の任意の元 f に対して、適当な e-単関数列 {sn} および {tn} が存在して、それぞれ下から単調に、および上から単調に、fe-一様に収束する。

ラドン=ニコディムの定理との関係

測度空間とし、 上の符号付 -加法的測度の実空間とする。全変動ノルム英語版を備えるデデキント完備なバナッハ束であり、したがって主射影性を持つことが示される。任意の正測度 に対し、上述のように定義される -単関数は、 上の -可測単関数と(通常の意味で)ちょうど対応することが示される。さらに、フロイデンタールのスペクトル定理より、 によって生成される帯(band)内の任意の測度 上の -可測単関数によって下から単調な方法で近似されるため、ルベーグの単調収束定理より、 はある 関数に対応し、 によって生成される帯とバナッハ束 の間の等長束同型を構成することが示される。

関連項目

参考文献




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「フロイデンタールのスペクトル定理」の関連用語

フロイデンタールのスペクトル定理のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



フロイデンタールのスペクトル定理のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのフロイデンタールのスペクトル定理 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS