階層ベイズモデル
階層ベイズモデル(かいそうべいずもでる、Bayesian hierarchical modeling)は、複数のレベルで記述された、階層形式の統計モデルであり、ベイズ推定を用いて事後分布のパラメータを推定する[1]。サブモデルを組み合わせて階層的なモデルを形成し、ベイズの定理を用いて観測データと統合して、全ての不確実性を考慮した事後分布を得る。
ベイズ統計ではパラメータを確率変数として扱い、主観的な情報に基づき、これらのパラメータの分布を仮定する。このため、頻度論的統計ではベイズ統計とは一見矛楯した結論が得られることがある[2]。設定する問い自体が異なるため厳密に言えば矛楯するものではないが、どちらの答えを重要視するかに違いがある。ベイジアンは、意思決定と信念の更新についての関連情報を無視することはできないこと、対象者から複数の観察データが得られる場合には階層モデリングが古典的な方法を覆す可能性があることを主張する。さらに、このモデルはロバストであることが証明されており、事後分布は、より柔軟な階層的事前分布にはあまり影響されない。
階層モデリングは、複数の異なるレベルの観測単位で情報が得られる場合に使用する。例えば、複数の国の感染経路を記述する疫学モデルでは、観測単位は国であり、国毎に日々の感染者の経時的データが異なる[3]。複数の油田やガス田の産出量の減衰曲線を説明する減衰曲線分析では、観測単位は貯蔵地域の油田またはガス田であり、それぞれに生産率経時的データがある(通常、バレル/月) [4]。階層モデリングのデータ構造は入れ子状である。階層的な分析・統合は、パラメータがたくさんある問題を理解するのに役立つだけでなく、計算戦略の策定にも重要な役割を果たす[5]。
基本原理
統計的手法とモデルは、一般に、問題がこれらのパラメータの同時確率モデルの依存性を暗示するような方法で関連または接続されていると見なすことができる複数のパラメータを含む[6]。確率の形で表される個々の信念の程度には、不確実性が伴う[7]。その中で、時間の経過とともに信念の度合いが変化する。ホセ・M・ベルナルド教授とエイドリアン・F・スミス教授が述べたように、「学習プロセスの現実は、現実についての個人的および主観的な信念の進化にある」。これらの主観的な確率は、物理的な確率よりも精神に直接関係している。したがって、ベイジアンが特定のイベントの事前発生を考慮に入れた代替の統計モデルを策定したのは、この信念を更新する必要があるためである[8]。
ベイズの定理
現実世界で事象が発生した場合、通常、ある選択肢における選好が修正される。これは、選択肢を定義する事象に対して個人が抱く信念の度合いを修正することで行われる[9]。
心臓治療の効果を調べる研究で、病院 カテゴリ
- 階層ベイズモデルのページへのリンク