勾配作用素とは? わかりやすく解説

勾配作用素

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2017/12/02 20:00 UTC 版)

円柱座標変換」の記事における「勾配作用素」の解説

勾配 grad : ( grad ⁡ f ) ( x , y , z ) = ( ( ∂ f / ∂ x ) ( x , y , z ) ( ∂ f / ∂ y ) ( x , y , z ) ( ∂ f / ∂ z ) ( x , y , z ) ) = ( ( ∂ f ∂ x ) ( x , y , z ) ) ( 1 0 0 ) + ( ( ∂ f ∂ y ) ( x , y , z ) ) ( 0 1 0 ) + ( ( ∂ f ∂ z ) ( x , y , z ) ) ( 0 0 1 ) {\displaystyle {\begin{aligned}(\operatorname {grad} f)(x,y,z)&=\left({\begin{matrix}(\partial f/\partial x)(x,y,z)\\(\partial f/\partial y)(x,y,z)\\(\partial f/\partial z)(x,y,z)\\\end{matrix}}\right)\\&=\left(\left({\frac {\partial f}{\partial x}}\right)(x,y,z)\right)\left({\begin{matrix}1\\0\\0\\\end{matrix}}\right)+\left(\left({\frac {\partial f}{\partial y}}\right)(x,y,z)\right)\left({\begin{matrix}0\\1\\0\\\end{matrix}}\right)+\left(\left({\frac {\partial f}{\partial z}}\right)(x,y,z)\right)\left({\begin{matrix}0\\0\\1\\\end{matrix}}\right)\end{aligned}}} (6-2-1) を円柱座標変換すると ... 以下、証明を行う。(grad f )(Φ(r , θ, ζ)) と、Nr (r , θ, ζ) の内積を取ると、 [ ( grad ⁡ f ) ( Φ ( r , θ , ζ ) ) ] ⋅ ( N r ( r , θ , ζ ) ) = ( ( ∂ f ∂ x ) ( Φ ( r , θ , ζ ) ) , ( ∂ f ∂ y ) ( Φ ( r , θ , ζ ) ) , ( ∂ f ∂ z ) ( Φ ( r , θ , ζ ) ) ) ( cos ⁡ θ sin ⁡ θ 0 ) = cos ⁡ θ ( ( ∂ f ∂ x ) ( Φ ( r , θ , ζ ) ) ) + sin ⁡ θ ( ( ∂ f ∂ y ) ( Φ ( r , θ , ζ ) ) ) = cos ⁡ θ [ cos ⁡ θ ( ( ∂ ( f ∘ Φ ) ∂ r ) ( r , θ , z ) ) − sin ⁡ θ r ( ( ∂ ( f ∘ Φ ) ∂ θ ) ( r , θ , z ) ) ] + sin ⁡ θ [ sin ⁡ θ ( ( ∂ ( f ∘ Φ ) ∂ r ) ( r , θ , z ) ) + cos ⁡ θ r ( ( ∂ ( f ∘ Φ ) ∂ θ ) ( r , θ , z ) ) ] = ( ∂ ( f ∘ Φ ) ∂ r ) ( r , θ , z ) {\displaystyle {\begin{aligned}\left[\left(\operatorname {grad} f\right)(\Phi (r,\theta ,\zeta ))\right]\cdot \left({{\mathbf {N} }_{r}}(r,\theta ,\zeta )\right)=&\left(\left({\frac {\partial f}{\partial x}}\right)(\Phi (r,\theta ,\zeta )),\left({\frac {\partial f}{\partial y}}\right)(\Phi (r,\theta ,\zeta )),\left({\frac {\partial f}{\partial z}}\right)(\Phi (r,\theta ,\zeta ))\right)\left({\begin{matrix}\cos \theta \\\sin \theta \\0\\\end{matrix}}\right)\\=&\cos \theta \left(\left({\frac {\partial f}{\partial x}}\right)(\Phi (r,\theta ,\zeta ))\right)+\sin \theta \left(\left({\frac {\partial f}{\partial y}}\right)(\Phi (r,\theta ,\zeta ))\right)\\=&\cos \theta \left[\cos \theta \left(\left({\frac {\partial (f\circ \Phi )}{\partial r}}\right)(r,\theta ,z)\right)-{\frac {\sin \theta }{r}}\left(\left({\frac {\partial (f\circ \Phi )}{\partial \theta }}\right)(r,\theta ,z)\right)\right]\\&+\sin \theta \left[\sin \theta \left(\left({\frac {\partial (f\circ \Phi )}{\partial r}}\right)(r,\theta ,z)\right)+{\frac {\cos \theta }{r}}\left(\left({\frac {\partial (f\circ \Phi )}{\partial \theta }}\right)(r,\theta ,z)\right)\right]\\=&\left({\frac {\partial (f\circ \Phi )}{\partial r}}\right)(r,\theta ,z)\end{aligned}}} (6-2-2) [ ( grad ⁡ f ) ( Φ ( r , θ , ζ ) ) ] ⋅ ( N θ ( r , θ , ζ ) ) = 1 r ( ∂ ( f ∘ Φ ) ∂ θ ) ( r , θ , z ) {\displaystyle \left[\left(\operatorname {grad} f\right)(\Phi (r,\theta ,\zeta ))\right]\cdot \left({{\mathbf {N} }_{\theta }}(r,\theta ,\zeta )\right)={\frac {1}{r}}\left({\frac {\partial (f\circ \Phi )}{\partial \theta }}\right)(r,\theta ,z)} (6-2-3) [ ( grad ⁡ f ) ( Φ ( r , θ , ζ ) ) ] ⋅ ( N ζ ( r , θ , ζ ) ) = ( ∂ ( f ∘ Φ ) ∂ ζ ) ( r , θ , ζ ) {\displaystyle \left[\left(\operatorname {grad} f\right)(\Phi (r,\theta ,\zeta ))\right]\cdot \left({{\mathbf {N} }_{\zeta }}(r,\theta ,\zeta )\right)=\left({\frac {\partial (f\circ \Phi )}{\partial \zeta }}\right)(r,\theta ,\zeta )} (6-2-3) が成り立つ。従って「ベクトル場円柱座標表示」と同様にして、上の等式示せる。

※この「勾配作用素」の解説は、「円柱座標変換」の解説の一部です。
「勾配作用素」を含む「円柱座標変換」の記事については、「円柱座標変換」の概要を参照ください。

ウィキペディア小見出し辞書の「勾配作用素」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ



英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「勾配作用素」の関連用語

勾配作用素のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



勾配作用素のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaの円柱座標変換 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。

©2024 GRAS Group, Inc.RSS