プラネタリー・バウンダリー 不可逆的な変化

プラネタリー・バウンダリー

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/03/25 10:02 UTC 版)

不可逆的な変化

限界点を超えた場合、環境に不可逆的な変化が起きると予測されている。これをレジームシフト(均衡状態の移行)とも呼ぶ[70]。地球システムは、自己制御のプロセスが2段階になっている。第1段階では変化に対して生物学的・物理的・化学的プロセスが負のフィードバックとして働き、もとの状態に戻ろうとする。この負のフィードバックは回復力とも表現される。しかし限界を超えて第2段階になると、負のフィードバックが働かず、温暖化や寒冷化など別の均衡状態へと移行し、後戻りができなくなる[71]

気候変動

北極の温暖化が限界点を超えた場合、海氷が解ける現象が自己加速する。海氷がなくなった海面は氷がある状態よりも色が暗くなるため、太陽放射からより多くの熱を吸収する。地球全体で気候の調節機能が影響を受け、農業や漁業など生業への被害、疫病、生活様式が変化する[70]

すでに限界点を超えている二酸化炭素濃度については、二酸化炭素が海洋に吸収されて酸性化を起こしており、正確な予測が困難なものもある[72]。海洋は温暖化によってより多くの二酸化炭素を吸収し、酸性化が進む。海面上昇は沿岸の海岸侵食、インフラストラクチャーへの被害も起こす[70]

12万年前は現在より気温が2度高く、当時の海面は4メートルから8メートル高かった。仮に同様の海面上昇が起きた場合、モルディブキリバスなどの島嶼部の国家は国土を喪失し[72]ニューヨークシドニー、東京など沿岸部の都市は維持が困難となる[73][74]

生物多様性の損失

生態系においても不可逆的な変化が起きている。ブラジルの熱帯雨林は伐採によって湿度が減少してサバンナが拡大し、新しい状態への固定化が進んでいる。硬質サンゴの生態系が崩壊すると、軟質サンゴや岩礁に変化する。海洋無酸素事変も起きている。変化は急激な場合もあり、沼沢地や川に窒素やリンを含む廃水が流されると急激な無酸素化や藻類の大発生が起きる[75]。サンゴ礁をはじめ海洋の生態系では、エルニーニョ現象などへの抵抗力が弱まる。サンゴ礁の崩壊や過剰な漁獲は生物多様性や漁業に悪影響を与える[70]

生物地球化学的循環

農業と都市生活からの窒素やリンの過剰な排水が淡水システムに影響を与える。地下水、湖、湿地、河川では富栄養化によって無酸素化が起きる。水質の低下は漁業、飲料水、健康への被害につながる[70]

土地利用変化

土地利用の増加は、温暖化とともに乾燥化を進める。森林の減少は水循環の喪失をまねき、雨量の減少、サバンナの自己乾燥の悪化、草原の砂漠化などを起こす。乾燥化や砂漠化は農業や牧畜業に影響を与え、食糧安全保障への悪影響、紛争増加の可能性がある[70]


注釈

  1. ^ 論文の原題は「A Safe Operating Space for Humanity」[6]
  2. ^ ロックストロームは、当初の失敗を次のように回想している。「『事実を目の前にすれば人は正しい決断を下す』と考えることがいかに素朴すぎるか、私にとって痛いほどはっきりした。大多数の人が自分に関わりがあると感じ、何かを信じる場合にのみ、社会の大きな変化が起こる。(中略)それは感情と思考の両面から起こることが必要だった」[10]
  3. ^ 書籍の原題は『The Human Quest: Prospering within Planetary Boundaries』[12]
  4. ^ 二酸化炭素濃度と放射強制力は2015年時点で連動している。ただし、大気は温室効果ガスと冷却化物質が混じり合う複雑な状態にあるため、つねに連動する保証はない[34]
  5. ^ 雲の高さや面積などによって、温暖化への影響が異なる。たとえば高い雲は地球を暖める傾向があり、低い雲は地球を冷やす傾向がある[36]
  6. ^ 絶滅した頂点捕食者であるオオカミを他の土地から再導入して生態系を回復した例として、1995年のイエローストーン国立公園の試みがある[40]
  7. ^ インドでは灌漑に使う化石水が世界最大であり、将来の農業への影響が懸念されている[59]
  8. ^ 環境省のサイトで、バーチャル・ウォーターの計算ソフトが公開されている。製作はNPO法人日本水フォーラムによる[63]
  9. ^ 霧の都とも呼ばれるロンドンでは冬のスモッグが有名であり、ロンドンスモッグ(1952年)によって1万人以上が死亡する事件も起きた[65]
  10. ^ 2014年の調査による[76]
  11. ^ オーストラリアでは2000年から2012年の12年間の旱魃で40億USドルの損害となった。2012年のハリケーン・サンディによって、ニューヨーク市は190億USドルの損害となった[76]
  12. ^ 新たな技術革新について、マサチューセッツ工科大学(MIT)のエリク・ブリンジョルフソンとアンドリュー・マカフィーは「第二の機械時代」と呼んでいる[80]
  13. ^ SDGsの議論は、国際連合事務総長潘基文が設置した地球の持続可能性に関する上級会合(GSP)から始まっている。OWGは、政府間協議プロセスとして活動した[43]

出典

  1. ^ 環境省 (2018年6月5日). 環境白書・循環型社会白書・生物多様性白書. 環境省 
  2. ^ 国連環境計画編 青山益夫訳 (2015). 『GEO5 地球環境概観 第5次報告書 上巻』. 一般社団法人 環境報告研. pp. 207-208,5,23,103,111,119,128,206. https://www.hokokuken.com/geo5.html 
  3. ^ ロックストローム, クルム 2018, pp. 165–167.
  4. ^ ロックストローム, クルム 2018, p. 59.
  5. ^ a b 工藤 1975.
  6. ^ a b ロックストローム, クルム 2018, p. 2.
  7. ^ a b ロックストローム, クルム 2018, pp. 2–3.
  8. ^ Rockström, Johan m. fl. (2009). “=Planetary Boundaries: Specials,”. Nature. 
  9. ^ Editorial, Nature 2009
  10. ^ ロックストローム, クルム 2018, p. 4.
  11. ^ ロックストローム, クルム 2018, p. 3.
  12. ^ ロックストローム, クルム 2018, p. 5.
  13. ^ ロックストローム, クルム 2018, pp. 5–6.
  14. ^ ロックストローム, クルム 2018, pp. 68–72.
  15. ^ a b c ロックストローム, クルム 2018, pp. 70–72.
  16. ^ ロックストローム, クルム 2018, p. 69.
  17. ^ ロックストローム, クルム 2018, p. 88.
  18. ^ Steffen, Rockström & Costanza 2011.
  19. ^ Rockström, Steffen & 26 others 2009; Stockholm Resilience Centre 2009.
  20. ^ Recent Mauna Loa CO2 Earth System Research Laboratory, NOAA Research.
  21. ^ Allen 2009; Heffernan 2009; Morris 2010; Pearce 2010, pp.34-45, "Climate change".
  22. ^ Allen 2009.
  23. ^ Samper 2009; Daily 2010; Faith & others 2010; Friends of Europe 2010; Pearce 2010, p.33, "Biodiversity".
  24. ^ Schlesinger 2009; Pearce 2009; UNEP 2010, pp.28-29; Howarth 2010; Pearce 2010, pp.33-34, "Nitrogen and phosphorus cycles".
  25. ^ Schlesinger 2009; Carpenter & Bennett 2011; Townsend & Porder 2011; Ragnarsdottir, Sverdrup & Koca 2011; UNEP 2011; Ulrich, Malley & Voora 2009; Vaccari 2010.
  26. ^ Brewer 2009; UNEP 2010, pp.36-37; Doney 2010; Pearce 2010, p.32, "Acid oceans".
  27. ^ Bass 2009; Euliss & others 2010; Foley 2009; Lambin 2010; Pearce 2010, p.34, "Land use".
  28. ^ Molden 2009; Falkenmark & Rockström 2010; Timmermans & others 2011; Gleick 2010; Pearce 2010, pp.32-33, "Fresh water".
  29. ^ Molina 2009; Fahey 2010; Pearce 2010, p.32, "Ozone depletion".
  30. ^ Pearce 2010, p.35, "Aerosol loading".
  31. ^ Handoh & Kawai 2011; Handoh & Kawai 2014; Pearce 2010, p.35, "Chemical pollution".
  32. ^ USGCRP 2009.
  33. ^ a b ロックストローム, クルム 2018, p. 73.
  34. ^ a b c d ロックストローム, クルム 2018, p. 76.
  35. ^ ロックストローム, クルム 2018, pp. 29–31.
  36. ^ 杉山 2011, p. 15.
  37. ^ 杉山 2011, pp. 15–17.
  38. ^ “国連報告書が世界に「警告」:100万種の生物が絶滅の危機に”. 国際連合広報センター. (2019年5月10日). https://www.unic.or.jp/news_press/features_backgrounders/33018/ 2021年4月21日閲覧。 
  39. ^ ロックストローム, クルム 2018, pp. 76–77.
  40. ^ ロックストローム, クルム 2018, p. 131-132.
  41. ^ a b c d ロックストローム, クルム 2018, p. 80.
  42. ^ ウォルフ 2016, pp. 114–121.
  43. ^ a b c d ロックストローム, クルム 2018, p. 165.
  44. ^ 矢ケ崎 1995.
  45. ^ 川田 1991, pp. 45–46.
  46. ^ “マメ科植物と共生する根粒菌の多様性を解明 -持続可能な農業への応用に期待-”. 国立大学法人千葉大学. (2019年7月26日). https://prtimes.jp/main/html/rd/p/000000362.000015177.html 2021年4月8日閲覧。 
  47. ^ a b ロックストローム, クルム 2018, p. 78.
  48. ^ Gruber, Sarmiento & Stocker 1996.
  49. ^ Stockholm Resilience Centre 2009.
  50. ^ Brewer 2009
  51. ^ ヴィンス 2015, pp. 206–207.
  52. ^ a b c d ロックストローム, クルム 2018, p. 77.
  53. ^ ヴィンス 2015, p. 350.
  54. ^ ヴィンス 2015, pp. 347–348.
  55. ^ Palaniappan & Gleick 2008.
  56. ^ a b c ヴィンス 2015, pp. 126–127.
  57. ^ ヴィンス 2015, p. 90.
  58. ^ ヴィンス 2015, pp. 71–78.
  59. ^ ヴィンス 2015, pp. 142.
  60. ^ ヴィンス 2015, pp. 142, 262.
  61. ^ 沖 2008, pp. 69–70.
  62. ^ 渡邉, 沖, 太田 2009, pp. 127–128.
  63. ^ “仮想水計算機”. 環境省. https://www.env.go.jp/water/virtual_water/kyouzai.html 2021年4月8日閲覧。 
  64. ^ a b ロックストローム, クルム 2018, p. 72.
  65. ^ 溝口 1998.
  66. ^ 藤田 1998.
  67. ^ バナジー, デュフロ 2020, p. 4811/8512.
  68. ^ ヴィンス 2015, p. 48.
  69. ^ ロックストローム, クルム 2018, p. 61.
  70. ^ a b c d e f ロックストローム, クルム 2018, pp. 48–49.
  71. ^ ロックストローム, クルム 2018, p. 53.
  72. ^ a b ヴィンス 2015, p. 188-189, 214-215.
  73. ^ ロックストローム, クルム 2018, pp. 89.
  74. ^ “海面上昇の影響について”. 全国地球温暖化防止活動推進センター(JCCCA). https://www.jccca.org/faq/15931 2021年4月8日閲覧。 
  75. ^ ロックストローム, クルム 2018, pp. 92–93.
  76. ^ a b c d ロックストローム, クルム 2018, p. 129.
  77. ^ バナジー, デュフロ 2020, p. 4518-4526/8512.
  78. ^ バナジー, デュフロ 2020, p. 4544-4551/8512.
  79. ^ a b c d e f ロックストローム, クルム 2018, p. 153.
  80. ^ ロックストローム, クルム 2018, p. 151.
  81. ^ Breaking Boundaries - IMDb(英語)





英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「プラネタリー・バウンダリー」の関連用語

プラネタリー・バウンダリーのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



プラネタリー・バウンダリーのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのプラネタリー・バウンダリー (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS