「斉次多項式_(代数幾何学)」を解説文に含む見出し語の検索結果(81~90/98件中)
.mw-parser-output .hatnote{margin:0.5em 0;padding:3px 2em;background-color:transparent;border-bottom...
.mw-parser-output .hatnote{margin:0.5em 0;padding:3px 2em;background-color:transparent;border-bottom...
.mw-parser-output .hatnote{margin:0.5em 0;padding:3px 2em;background-color:transparent;border-bottom...
ナビゲーションに移動検索に移動この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。出典検索?: "平面曲線" –&...
ナビゲーションに移動検索に移動この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。出典検索?: "平面曲線" –&...
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfb...
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfb...
数学において、多項式の判別式(はんべつしき、英: discriminant)とは、その多項式の根が重根を持つための条件を与える、元の多項式係数の多項式で、最小のもののことである。一般にdisc...
数学において、多項式の判別式(はんべつしき、英: discriminant)とは、その多項式の根が重根を持つための条件を与える、元の多項式係数の多項式で、最小のもののことである。一般にdisc...
数学において、多項式の判別式(はんべつしき、英: discriminant)とは、その多項式の根が重根を持つための条件を与える、元の多項式係数の多項式で、最小のもののことである。一般にdisc...