ランダウ=リフシッツ=ギルバート方程式
(Landau–Lifshitz–Gilbert equation から転送)
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/11/22 08:20 UTC 版)
ランダウ=リフシッツ=ギルバート方程式(ランダウ=リフシッツ=ギルバートほうていしき、英語: Landau–Lifshitz–Gilbert equation)は、磁場中での磁化ベクトルの歳差運動を記述する微分方程式である。式の名称は、1935年に磁化の動力学において歳差運動に減衰項を初めて導入したレフ・ランダウとエフゲニー・リフシッツ[1]、および、1955年に減衰項を修正したT. L. Gilbert[2]の3人に由来する。
この式は強磁性を持つ物質に対する磁場の効果を記述するために利用され、特に磁気抵抗メモリの制御などに応用される。
ランダウ=リフシッツ方程式
磁化の動力学についての最初のモデルは、1935年にランダウとリフシッツによって導入された。このモデルは磁場の存在による磁化の歳差運動を表す運動方程式で、磁場の異方性や量子力学的な効果は有効磁場として現象論的に導入される。
ランダウとリフシッツが提案したのは、磁化ベクトルMに対する以下の式である[3][4][5]。
- Landau–Lifshitz–Gilbert equationのページへのリンク