K-edge-connected graphとは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > K-edge-connected graphの意味・解説 

k-辺連結グラフ

(K-edge-connected graph から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/01/24 09:59 UTC 版)

ナビゲーションに移動 検索に移動

数学グラフ理論において、あるグラフがk-辺連結(k-へんれんけつ、: k-edge-connected)であるとは辺連結度k以上のグラフのことである。 言い換えると、グラフから k より少ない数の辺を除いても連結英語版であることを言う。

定義

グラフG = (V,E) が与えられたとき、|X| < k であるような全ての X ⊆ E に対して G' = (V,E \ X) が連結であるときGk-辺連結であると言う。明らかに、Gk-辺連結グラフならばGは (k−1)-辺連結である。

最小の頂点次数との関係

最小の頂点次数は、辺連結度の自明な上界である。すなわち、グラフ G = (E,V) が k-辺連結であるなら、必ず k ≤ δ(G) が成り立つ。但し、δ(G) は任意の頂点 v ∈ V の中での最小の次数を表す。明らかに、ある頂点 v に接続するすべての辺を取り除けば、v はそのグラフから離れて非連結となるであろう。

計算理論的側面

辺連結度の算出

辺連結度を決定するための多項式時間アルゴリズムが存在する。 ある簡単なアルゴリズムは、全てのペア (u,v) に対して、G 内のすべての辺の容量が両方向に対して 1 に定められているような、 u から v への最大フローを決定するものである。 グラフが k-辺連結であるための必要十分条件は、任意ペア (u,v) に対して u から v への最大フローは最小でも k であること、すなわち k が全ての (u,v) の中での最小の u-v-フローであることである。

V をグラフに含まれる頂点の数としたとき、この簡単なアルゴリズムでは 回の最大フロー問題の反復が行われ、時間 内に解決される。したがって、この簡単なアルゴリズムの計算量は、総合すると となる。

改善されたアルゴリズムでは、任意の固定された u と、固定されていない任意の v からなる全てのペア (u,v) に対する最大フロー問題を解く。このアルゴリズムでは計算量は へと減らされており、適切なものである。なぜならば、もし容量が k より少ないカットが存在するのなら、それは u を他の頂点から切り離すからである。

k辺連結部分グラフの算出

関連する問題: グラフ G の最小 k-辺連結部分グラフを見つける(すなわち、スケルトンが k-辺連結となるような可能な限り少ない辺をグラフから選択する)問題は、 に対してNP困難である[1]

参考文献

  1. ^ M.R. Garey and D.S. Johnson. Computers and Intractability: a Guide to the Theory of NP-Completeness. Freeman, San Francisco, CA, 1979.

関連項目

数学的対象と性質

定理

問題

  • 辺連結度増大問題

「K-edge-connected graph」の例文・使い方・用例・文例

Weblio日本語例文用例辞書はプログラムで機械的に例文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「K-edge-connected graph」の関連用語

K-edge-connected graphのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



K-edge-connected graphのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのk-辺連結グラフ (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
Tanaka Corpusのコンテンツは、特に明示されている場合を除いて、次のライセンスに従います:
 Creative Commons Attribution (CC-BY) 2.0 France.
この対訳データはCreative Commons Attribution 3.0 Unportedでライセンスされています。
浜島書店 Catch a Wave
Copyright © 1995-2025 Hamajima Shoten, Publishers. All rights reserved.
株式会社ベネッセコーポレーション株式会社ベネッセコーポレーション
Copyright © Benesse Holdings, Inc. All rights reserved.
研究社研究社
Copyright (c) 1995-2025 Kenkyusha Co., Ltd. All rights reserved.
日本語WordNet日本語WordNet
日本語ワードネット1.1版 (C) 情報通信研究機構, 2009-2010 License All rights reserved.
WordNet 3.0 Copyright 2006 by Princeton University. All rights reserved. License
日外アソシエーツ株式会社日外アソシエーツ株式会社
Copyright (C) 1994- Nichigai Associates, Inc., All rights reserved.
「斎藤和英大辞典」斎藤秀三郎著、日外アソシエーツ辞書編集部編
EDRDGEDRDG
This page uses the JMdict dictionary files. These files are the property of the Electronic Dictionary Research and Development Group, and are used in conformance with the Group's licence.

©2025 GRAS Group, Inc.RSS