等方座標
この項目「等方座標」は翻訳されたばかりのものです。不自然あるいは曖昧な表現などが含まれる可能性があり、このままでは読みづらいかもしれません。(原文:en:Isotropic coordinates) 修正、加筆に協力し、現在の表現をより自然な表現にして下さる方を求めています。ノートページや履歴も参照してください。(2016年10月) |
![]() |
ローレンツ多様体理論において、球対称時空には一連の入れ子球面構造[訳語疑問点] (family of nested round spheres) を見出すことができる。この一連の入れ子球面にどのような座標チャートを適用するかにはいくつかの異る型が存在する。最も知られているのはシュワルツシルトチャートであるが、等方チャートが便利であることも多い。等方チャートの決定的な特徴は、その動径座標(シュワルツシルトチャートにおける動径座標とは異なる)が光円錐が「丸まる」ように定義されていることである。このことは、(自明な局所的に平坦な場合を除いて)等方座標の角度座標は入れ子球面上の距離を忠実に表わしているわけではなく、動径座標も動径距離を忠実に表わしているわけではないことを意味する。一方で、一定座標時における超断面上の角度は歪みなく表現されており、名前の由来となっている。
等方座標は、一般相対性理論などの計量重力理論において静的球対称時空に対して用いられることが多いが、脈動する流体球のモデリングなどに利用することもできる。孤立したアインシュタイン方程式の球対称解の場合、中心から十分離れれば等方チャートとシュワルツシルトチャートとはいずれもミンコフスキー時空における通常の極座標に漸近する。
定義
(静的球対称時空の)等方チャートにおいて、線素は次のような表式で表わされる。
- 等方座標のページへのリンク