Algebraically closed fieldとは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > Algebraically closed fieldの意味・解説 

代数的閉体

(Algebraically closed field から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/06/19 19:29 UTC 版)

数学において、 K代数的に閉じているまたは代数的閉体(だいすうてきへいたい、: algebraically closed field; 代数閉体)であるとは、一次以上の任意の K 係数英語版変数多項式K 上にを持つこと、あるいは同じことであるが、一次以上の任意の K 係数一変数多項式が一次多項式の積として書けることである。

代数学の基本定理は、複素数体 C が代数的閉体であることを主張する定理である。一方で、有限体 Fq有理数体 Q実数体 R は代数的閉体ではない[1]

性質

代数的閉包
任意の体 K について、K の代数的拡大かつ代数的に閉である体が存在して同型を除いて一意に定まり、K代数的閉包と呼ばれる[2]K の代数的閉包は KalgK, ˆK のように書かれる。K の任意の代数拡大 LKK 代数の準同型写像によって埋め込むことができ、そのような埋め込みの数は LK 上の分離指数と呼ばれる。
濃度による一意性
α非可算無限濃度とするとき、任意の標数 p について、標数 p で濃度が α であるような代数的閉体は同型をのぞいて一意に定まる。実際、そのような代数的閉体は k素体(つまり Q または Fp)として k((Xβ)βα) の代数的閉包と同型になっていることが、超越基底の存在と代数的閉包の一意性から従う。任意の有限体は代数的閉体にはなりえない。可算無限濃度の代数的閉体は、k を素体、α を可算濃度として k((Xβ)βα) の代数閉包なるものが考えられ、これら[どれ?]は互いに非同型なので可算無限濃度の代数的閉体はそれぞれの標数について可算個の同型類があることが分かる。
行列の固有値
代数的閉体上では多項式が一次式の積に分解することから、代数的閉体上で任意の行列ジョルダン標準形を持つことや、行列が対角化可能であることとその最小多項式が重根を持たないことの同値性などが従う。
基礎論(モデル理論)と代数的閉体
特定の標数の代数的閉体について、一階述語論理で加法・乗法・加法や乗法の単位元を組み合わせて記述できるような命題の真偽は、どの代数的閉体で考えても同じになる(標数 p の代数的閉体の公理系は完全な理論である)。さらに、量化子を含んだ命題で指定されるような代数的閉体の直積の部分集合は、実際には量化子を含まない命題で指定することができる(量化記号消去)。

  1. ^ それぞれの場合に多項式 1 + ∏aFq (Xa), X2 − 2, X2 + 1 が根を持たないから。
  2. ^ Steinitz 1910.

参考文献

関連項目

外部リンク


「Algebraically closed field」の例文・使い方・用例・文例

Weblio日本語例文用例辞書はプログラムで機械的に例文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「Algebraically closed field」の関連用語

Algebraically closed fieldのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



Algebraically closed fieldのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの代数的閉体 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
Tanaka Corpusのコンテンツは、特に明示されている場合を除いて、次のライセンスに従います:
 Creative Commons Attribution (CC-BY) 2.0 France.
この対訳データはCreative Commons Attribution 3.0 Unportedでライセンスされています。
浜島書店 Catch a Wave
Copyright © 1995-2025 Hamajima Shoten, Publishers. All rights reserved.
株式会社ベネッセコーポレーション株式会社ベネッセコーポレーション
Copyright © Benesse Holdings, Inc. All rights reserved.
研究社研究社
Copyright (c) 1995-2025 Kenkyusha Co., Ltd. All rights reserved.
日本語WordNet日本語WordNet
日本語ワードネット1.1版 (C) 情報通信研究機構, 2009-2010 License All rights reserved.
WordNet 3.0 Copyright 2006 by Princeton University. All rights reserved. License
日外アソシエーツ株式会社日外アソシエーツ株式会社
Copyright (C) 1994- Nichigai Associates, Inc., All rights reserved.
「斎藤和英大辞典」斎藤秀三郎著、日外アソシエーツ辞書編集部編
EDRDGEDRDG
This page uses the JMdict dictionary files. These files are the property of the Electronic Dictionary Research and Development Group, and are used in conformance with the Group's licence.

©2025 GRAS Group, Inc.RSS