劣モジュラー函数とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 劣モジュラー函数の意味・解説 

劣モジュラ関数

(劣モジュラー函数 から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2025/03/14 06:33 UTC 版)

劣モジュラ関数(れつモジュラかんすう、: submodular function)とは、数学において集合関数の一種で、簡単にいうと、関数に渡される集合に1つ要素が加わった場合に増える関数の値が、もとの集合が大きくなるにつれ小さくなるような関数を指す。集合関数であることを明示して劣モジュラ集合関数ということもある。劣モジュラ関数の概念は一般のベクトル値関数における凸関数の概念と類似した性質を持つため、近似アルゴリズムやゲーム理論機械学習などの幅広い応用を持つ。

定義

台集合 Ω の冪集合 2Ω 上の関数 f: 2ΩR で 次を満たす関数を劣モジュラ関数と呼ぶ。

劣モジュラ性
任意の集合対 S, T ⊆ Ω に対して、f(S) + f(T) ≥ f(ST) + f(ST)

この不等式を劣モジュラ不等式と呼ぶ。 なお、不等号の向きを逆にした不等式を優モジュラ不等式と呼び、それを満たす集合関数を優モジュラ関数と呼ぶ。

また、上記の不等式と以下の 2 つの不等式は同値である。

  1. 任意の集合対
    この節の加筆が望まれています。

    ロバース拡張

    ベクトル




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「劣モジュラー函数」の関連用語

劣モジュラー函数のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



劣モジュラー函数のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの劣モジュラ関数 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS