マクスウェル・ベティの相反作用の定理とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > マクスウェル・ベティの相反作用の定理の意味・解説 

マクスウェル・ベティの相反作用の定理

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2020/05/11 15:43 UTC 版)

ナビゲーションに移動 検索に移動

マクスウェル・ベティの相互作用の定理(マクスウェル・ベティのそうごさようのていり、英語: Maxwell-Betti reciprocal work theorem)とは、構造力学における弾性体の定理である。1872年エンリコ・ベッチによって発見された[1]。弾性体上に2種類の荷重群をかけることを考える。一つ目の荷重群のみをかけたときにもう一方の荷重群の作用点の作用方向変位成分をとする。また、荷重群のみをかけたときのの作用点の作用方向変位成分をとする。このときベティの相反定理

が成り立つ[2]

特にi = k = 1, P1 = P '1 = 1とすると、マクスウェルの相反定理

任意の点Aに作用する単位荷重PAによって他の点Bに生じる変位(の、別に点Bに作用される単位荷重PBの方向への成分)u'Aは、PBによる点AのPAの方向への変位量(の、PAの方向への成分)uBに等しい。すなわち

が成り立つ。

証明

簡単な証明としてi = k = 1とし、弾性体に力PAPBの2つの荷重を作用させる。ただし作用させる手順は次の2通りを考える。

  • PAを作用させた後、PBを作用させる。このとき、
    1. PAを作用させた際の点Aの変位をuAAとすると、外力仕事は(1/2)PA uAA
    2. その後PBを作用させた際の点A, Bの変位をそれぞれuAB, uBBとすると、外力仕事は(1/2)PB uBB + PA uAB
  • PBを作用させた後、PAを作用させる。このとき、
    1. PBを作用させた際の点Bの変位をuBBとすると、外力仕事は(1/2)PB uBB
    2. その後PAを作用させた際の点A, Bの変位をそれぞれuAA, uBAとすると、外力仕事は(1/2)PA uAA + PB uBA

弾性体に蓄えられるひずみエネルギーは経路によらないため、それぞれの手順による外力仕事の和は同じでなければならない。したがって

が成り立つ。

  1. ^ なお、名前のもうひとつのほうの「マクスウェル」は、電磁方程式などでも有名なジェームズ・クラーク・マクスウェルに由来する。
  2. ^ 石田修三、松永裕之、中村恒善、須賀好富、永井興史郎 『建築構造力学 図説・演習II』 丸善、162-164頁。ISBN 978-4621039663 

関連項目




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「マクスウェル・ベティの相反作用の定理」の関連用語

マクスウェル・ベティの相反作用の定理のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



マクスウェル・ベティの相反作用の定理のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのマクスウェル・ベティの相反作用の定理 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS