フォークマングラフとは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > フォークマングラフの意味・解説 

フォークマングラフ

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2025/03/06 05:34 UTC 版)

フォークマングラフ
フォークマングラフ
命名者 ジョン・フォークマン
頂点 20
40
半径 3
直径 4
内周 4
彩色数 2
彩色指数 4
特性 ハミルトン
正則
2部
半対称
オイラー
パーフェクト
テンプレートを表示

数学グラフ理論の分野におけるフォークマングラフ: Folkman graph)とは、ジョン・フォークマン英語版の名にちなむグラフであり、20個の頂点と40個の英語版を持ち、4-正則2部グラフである[1]

フォークマングラフはハミルトンであり、彩色数は 2、彩色指数は 4、半径は 3、直径は 4、内周は 4 である。4-頂点連結かつ 4-辺連結パーフェクトグラフでもある。

代数的性質

フォークマングラフの自己同型群は、その辺上では推移的に作用するが、頂点上ではそのように作用しない。フォークマングラフは、辺推移的かつ正則な最小の無向グラフであるが、頂点推移的ではない[2]。そのようなグラフは半対称グラフと呼ばれ、1967 年にこのグラフを発見したフォークマンによって初めて研究された[3]

半対称グラフとしてのフォークマングラフは2部グラフであり、その自己同型群は各二つの頂点からなる bipartition の集合上で推移的に作用する。フォークマングラフの彩色数を示している下の図においては、緑の頂点が赤の頂点へと写される自己同型は存在しないが、どのような赤の頂点も他の赤の頂点へと写すことができ、また、どのような緑の頂点も他の緑の頂点へと写すことが出来る。

フォークマングラフの特性多項式

フォークマングラフの彩色指数英語版は 4 である。
  • フォークマングラフの彩色数は 2 である。
  • フォークマングラフはハミルトンである。
  • 参考文献

    1. ^ Weisstein, Eric W. "Folkman graph". mathworld.wolfram.com (英語).
    2. ^ Skiena, S. Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, pp. 186-187, 1990
    3. ^ Folkman, J. (1967), “Regular line-symmetric graphs”, Journal of Combinatorial Theory 3 (3): 215–232, doi:10.1016/S0021-9800(67)80069-3 



    英和和英テキスト翻訳>> Weblio翻訳
    英語⇒日本語日本語⇒英語
      

    辞書ショートカット

    すべての辞書の索引

    「フォークマングラフ」の関連用語











    フォークマングラフのお隣キーワード
    検索ランキング

       

    英語⇒日本語
    日本語⇒英語
       



    フォークマングラフのページの著作権
    Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

       
    ウィキペディアウィキペディア
    All text is available under the terms of the GNU Free Documentation License.
    この記事は、ウィキペディアのフォークマングラフ (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

    ©2025 GRAS Group, Inc.RSS