ネーター的位相空間とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > ネーター的位相空間の意味・解説 

ネーター的位相空間

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2019/10/03 13:14 UTC 版)

数学において、ネーター的位相空間: noetherian topological space)とは、閉部分集合について降鎖条件を満たす位相空間のことである。

定義

位相空間 X がネーター的とは、任意の閉部分集合の列

に対して、ある r が存在し、

となることである。

特徴づけ

x を位相空間とするとき、以下は同値。

  • X はネーター的(すなわち閉部分集合について降鎖条件を満たす)。
  • X の閉部分集合の空でない任意の族は包含関係に対して極小元をもつ。
  • X は開部分集合について昇鎖条件を満たす。
  • X の開部分集合の空でない任意の族は包含関係に対して極大元をもつ。
  • X の任意の部分集合はコンパクト。

性質

  • ネーター的位相空間は準コンパクトである。
  • ネーター的位相空間の部分空間はネーター的である。
  • ネーター的位相空間がハウスドルフであれば、有限集合に離散位相を入れたものである。
  • ネーター的位相空間X は有限個の既約な閉部分集合の和で書ける

ここでのときとすれば既約成分全体は一意に定まる。

  • k 上のアフィン n-空間 ザリスキ位相でネーター的である。一般に、ネーター環のスペクトラムはネーター的である。

参考文献




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「ネーター的位相空間」の関連用語

ネーター的位相空間のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



ネーター的位相空間のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのネーター的位相空間 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS