モンティ・ホール問題 計算

モンティ・ホール問題

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/05/14 03:59 UTC 版)

計算

最初の状態
プレーヤーが選んだ1番のドアが当たりの確率は1/3、残り2枚のドアが当たりの確率は各々が1/3 で、和は 2/3。
モンティがドアを開いた後
「1番のドアが当たりの確率は1/3」および「残り2枚のドアが当たる確率 = 2/3」は変化しない。ただし、後者は 2/3の確率は2番のドアに集中し、3番のドアの当たり確率は 0。

数え上げ (ベイズの公式)

自然な仮定の下で、開けるドアを変更すると、プレーヤーが景品を獲得する確率が2倍になることをベイズの公式(ベイズの定理)を使って示す。

簡単化のため、プレーヤーは初めにAのドアを選ぶものとする(プレーヤーが初めにBまたはCのドアを選ぶとしても以下の論法は変わらない)。

標本空間をΩとし(例えば、全ての放映されたモンティ・ホール・ショーのうち、プレーヤーが初めにAのドアを選んだ場合全ての集合と考えることにする)、Ω上で定義された確率をPとする(ここでは、Ωの任意の部分集合Uに対して、P(U)=(Uの要素の個数)/(Ωの要素の個数)と定義することにする)。また、Ω上で定義された「景品があるドア」を表す確率変数をXとし、「モンティが開けるドア」を表す確率変数をYする。XとYの値域は、それぞれ、X(Ω)={A,B,C}、Y(Ω)={A,B,C}である。xをX(Ω)の要素を表す変数とすれば(つまりxはA,B,Cのいずれかの値を取る)、「景品があるドア」がxである確率はPX(x)=P(X-1(x))と表される。同様に、yをY(Ω)の要素を表す変数とすれば、「モンティが開けるドア」がyである確率はPY(y)=P(Y-1(y))と表される。

プレーヤーが初めにAのドアを選び、モンティがBかCのドアを開ける前の時点での結合確率PX,Y(x,y)=P(X-1(x)∩Y-1(y))を考える。ベイズの公式により、条件付確率PX|Y(x|y)=PX,Y(x,y)/PY(y)、および条件付確率PY|X(y|x)=PX,Y(x,y)/PX(x)である。

ここで自然ではあるが、問題文では触れられていない次の仮定を置く。「景品がAのドアにある場合、モンティがBのドアまたはCのドアを選ぶ確率は等しく1/2である」。この仮定が成り立たない場合については後で考察する。

プレーヤーの持っている情報では、景品がA,B,Cのどのドアにあるかの確率は等しく1/3である。つまりPX(A)=PX(B)=PX(C)=1/3である。プレーヤーがAのドアを選んだ場合、モンティはAのドアを開くことは無いので、条件付確率PY|X(A|A)=PY|X(A|B)=PY|X(A|C)=0 である。従ってPX,Y(A,A)=PX,Y(B,A)=PX,Y(C,A)=0 である。景品がAのドアにある場合、モンティがBのドアを選ぶ条件付確率PY|X(B|A)は、上の仮定により1/2であり、ベイズの公式から結合確率PX,Y(A,B)=PY|X(B|A)×PY(A)=1/6となる。モンティがCのドアを選ぶ結合確率PX,Y(A,C)も同様に1/6である。

景品がBのドアにある場合、モンティはAとBのドアを選ぶことはできないのでCのドアを開けざるを得ない。つまりPY|X(B|B)=0であり、PY|X(C|B)=1である。従ってPX,Y(B,B)=PY|X(B|B)×PX(B)=0であり、PX,Y(B,C)=PY|X(C|B)×PX(B)=1/3である。同様に、PX,Y(C,C)=0であり、PX,Y(C,B)=1/3である。

以上を表にまとめると、次のようになる。

プレーヤーがAのドアを選んだ時点での結合確率
結合確率PX,Y(x,y)=
P(X-1(x)∩Y-1(y))
確率変数Y
(モンティが開けるドア)
PX(x)=
P(X-1(x))
y=A y=B y=C
確率変数X
(景品があるドア)
x=A 0 1/6 1/6 1/3
x=B 0 0 1/3 1/3
x=C 0 1/3 0 1/3
PY(y)=
P(Y-1(y))
0 1/2 1/2 P(Ω)=1
(全確率)

表からわかるように、プレーヤーの持っている情報では、モンティがBのドアを開ける確率PY(B)またはCのドアを開ける確率PY(C)は等しく1/2である。 モンティがCのドアを開けた瞬間、プレーヤーの持っている情報は、条件付確率PX|Y(x|C)となる。ベイズの公式によりPX|Y(x|C)=PX,Y(x,C)/PY(C)であるから、PX|Y(A|C)=1/3、PX|Y(B|C)=2/3、PX|Y(C|C)=0となる。つまり、景品がAのドアにある確率は1/3であり、Bのドアにある確率は2/3である。従って確かに、プレーヤーが開けるドアをAからBに変更すれば、景品を獲得する確率は2倍になる。モンティがBのドアを開けた場合も全く同様になる。

「景品がAのドアにある場合、モンティがBのドアまたはCのドアを選ぶ確率は等しく1/2である」が成り立たない場合

以下で、上記の仮定「景品がAのドアにある場合、モンティがBのドアまたはCのドアを選ぶ確率は等しく1/2である」が成り立たない場合について考察する。景品がAのドアにある場合、モンティがBのドアを選ぶ確率をr (0≤r≤1)、Cのドアを選ぶ確率を1-rとする。つまりPY|X(B|A)=r、PY|X(C|A)=1-rとする。

この場合の、結合確率PX,Y(x,y)は下表のようになる。r=1/2であれば上の表に一致する。

プレーヤーがAのドアを選んだ時点ので結合確率
(モンティがBのドアを選ぶ確率はrの場合)
結合確率PX,Y(x,y)=
P(X-1(x)∩Y-1(y))
確率変数Y
(モンティが開けるドア)
PX(x)=
P(X-1(x))
y=A y=B y=C
確率変数X
(景品があるドア)
x=A 0 r/3 (1-r)/3 1/3
x=B 0 0 1/3 1/3
x=C 0 1/3 0 1/3
PY(y)=
P(Y-1(y))
0 (1+r)/3 (2-r)/3 P(Ω)=1
(全確率)

この場合、もしモンティがBのドアを開けた場合には、その瞬間に、各ドアに景品のある確率は、ベイズの公式によりPX|Y(A|B)=r/(1+r)、PX|Y(B|B)=0、PX|Y(C|B)=1/(1+r)に変化する。

逆に、もしモンティがCのドアを開けた場合には、その瞬間に、各ドアに景品のある確率は、ベイズの公式によりPX|Y(A|C)=(1-r)/(2-r)、PX|Y(B|C)=1/(2-r)、PX|Y(C|C)=0に変化する。

さらに具体的に、「プレーヤーがAのドアを選んだ状態で、景品がAのドアにある場合、モンティは必ずCのドアを選ぶ」、つまりr=0という情報をプレーヤーが持っている場合(例えば今まで放映された番組では、必ずそうしていたという情報を持っているような場合)について考えてみる。

この場合、もしモンティがBのドアを開けた場合には、その瞬間に、各ドアに景品のある確率は、上の式に r=0 を代入して PX|Y(A|B)=0、PX|Y(B|B)=0、PX|Y(C|B)=1に変化し、景品がCのドアにあることが確定する。

逆に、もしモンティがCのドアを開けた場合には、その瞬間に、各ドアに景品のある確率は、やはり上の式に r=0 を代入して PX|Y(A|C)=1/2、PX|Y(B|C)=1/2、PX|Y(C|C)=0に変化する。この場合は「ドアを変えても確率は五分五分(2分の1)であり、3分の2にはならない」というクレームは正しいことになる。

一方、r=0 の場合、モンティがBのドアを開ける確率は1/3であり、Cのドアを開ける確率は2/3である。プレーヤーが、どのような場合でもドアを変えるという戦略を採る場合の景品を得る確率は、1/3×1+2/3×1/2=1/3+1/3=2/3であり、r=1/2 の場合と変わらないことが分かる。

次に、r が一般の値 (0≤r≤1) であり、プレーヤーは r の値を知っていて、モンティが選択するドアに応じて、最も景品を得る確率が高いドアを選択する場合を考える。

この場合、モンティがBのドアを開けた場合には、Cのドアに景品がある条件付確率PX|Y(C|B)は1/(1+r)、Aのドアに景品がある条件付確率PX|Y(C|B)はr/(1+r)であるから、Cのドアに景品がある確率のほうが大きいか(r<1 の場合)、または等しい(r=1 の場合)。

逆に、モンティがCのドアを開けた場合には、Bのドアに景品がある条件付確率PX|Y(B|C)は1/(2-r)、Aのドアに景品がある条件付確率PX|Y(A|C)は(1-r)/(2-r)であるから、Bのドアに景品がある確率のほうが大きいか(r>0 の場合)、または等しい(r=0 の場合)。

結局、モンティがBまたはCのどちらのドアを選んだ場合でも、プレーヤーがAとは別の残りのドアを選んだ方が、選択をAのドアのまま変えない場合より景品を得る確率は高いか等しくなる。

これらの場合、モンティがBのドアを選ぶ確率は、上表から(1+r)/3であり、Cのドアを選ぶ確率は、(2-r)/3である。従って、モンティがBまたはCのどちらのドアを選ぶにしても、プレーヤーはAとは別の残りのドアを選ぶという戦略を採る場合に景品を得られる確率は、(1+r)/3×1/(1+r)+(2-r)/3×1/(2-/r)=1/3+1/3=2/3であり、これはrの値に関係なく成立することが分かる。

つまり、モンティがドアの選択について、どのような傾向を持っているかという情報を、プレーヤーが持っているか、いないかにかかわらず、プレーヤーはドアの選択を変更する戦略を採る方が、景品を得る確率は高くなり、その場合に景品を得られる確率は、モンティのドア選択の傾向(r の値)に関係なく2/3であることが分かる。

当たる確率のシミュレーション
青:変更せず / 赤:変更する

シミュレーション

簡単なプログラムでシミュレーションを行い、答えを導くこともできる(図)。このグラフでは、変更したドアに景品があった回数の累計が、変更しなかった場合の約2倍となっている。


注釈

  1. ^ 取り引き、駆け引き、のるかそるか、の意。なお、日本でも1979年に東京12チャンネル(当時)の「ザ・テレビジョン」内で「仰天がっぽりクイズ」という邦題で放送されたことがある。
  2. ^ 確率論の法則による。集合の和についての確率の値。

出典

  1. ^ ムロディナウ 2009, p. 71
  2. ^ サヴァント 2002, pp. 5–16
  3. ^ サヴァント 2002, pp. 183ff
  4. ^ 小林厚子「確率判断の認知心理(1)」(PDF)『東京成徳大学研究紀要』第5号、東京成徳大学、1998年、pp. 89-100、 オリジナルの2017年11月10日時点におけるアーカイブ。 
  5. ^ 小林厚子「確率判断の認知心理(2)」(PDF)『東京成徳大学研究紀要』第6号、東京成徳大学、1999年、pp. 137-146、 オリジナルの2020年11月15日時点におけるアーカイブ。 
  6. ^ a b c 英語版(22:38, 4 July 2010)





英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「モンティ・ホール問題」の関連用語

モンティ・ホール問題のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



モンティ・ホール問題のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのモンティ・ホール問題 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS