カルタン幾何学とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > カルタン幾何学の意味・解説 

カルタン幾何学

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/01/31 00:51 UTC 版)

カルタン幾何学[注 1](かるたんきかがく)(: Cartan geometry)とは、微分幾何学における概念で、多様体の各点における「一次近似」がクラインの幾何学とみなせるものの事である。カルタンの幾何学はクラインの幾何学とリーマン幾何学を包括する幾何学概念として提案された。


出典

  1. ^ #Sharpe p.61.
  2. ^ #Erickson 4.1節
  3. ^ #Tu p.247.
  4. ^ #Wendl3 p.89.
  5. ^ #Tu p.123.
  6. ^ a b #Tu p.198.
  7. ^ 中央大学大学院理工学研究科 数学特別講義第三 微分形式の可積分性”. p. 50. 2023年6月27日閲覧。
  8. ^ #小林 p.59.
  9. ^ #Erickson-2 p.3.
  10. ^ #Sharpe p.151.
  11. ^ #Erickson-2 p.7.
  12. ^ a b c d e f g #Sharpe p.184.
  13. ^ #Kobayashi p.127-128.
  14. ^ a b #Kobayashi p. 128.
  15. ^ #Sharpe p.365.
  16. ^ a b #Sharpe pp.156.
  17. ^ a b #Sharpe p.174.
  18. ^ #Sharpe p.157, 166.
  19. ^ #Sharpe p.154.
  20. ^ a b #Sharpe pp.154, 207, 213.
  21. ^ a b #Sharpe p.185.
  22. ^ #Alexandre p.65.
  23. ^ #Sharpe p.194.
  24. ^ a b #Sharpe p.188.
  25. ^ #Sharpe p.193.
  26. ^ a b c #Sharpe p.187
  27. ^ #Sharpe p.191.
  28. ^ #Sharpe p.191.
  29. ^ #Sharpe pp.164, 191.
  30. ^ #Sharpe p.191.
  31. ^ #Kobayashi-Nomizu-1 p.118.
  32. ^ a b c #Sharpe pp.151, 197.
  33. ^ #Erickson p.35.
  34. ^ #Alexandre p.39.
  35. ^ #Alexandre p.39.
  36. ^ a b c #Sharpe pp.362-364.
  37. ^ a b c #Sharpe p.199.
  38. ^ #Sharpe pp.196-197.なお、p.197の「ρ」はXの元であることから「ρ*」の誤記であると判断。
  39. ^ a b #Sharpe p.119.
  40. ^ #Sharpe pp.208.
  41. ^ a b c d e f g h i j k l m #Sharpe pp.209-211.
  42. ^ #Alexandre p.69.
  43. ^ #Sharpe-2 p.67.
  44. ^ #Alexandre p.68.
  45. ^ #Sharpe p.212.
  46. ^ #Sharpe p.111.
  47. ^ a b c d #Sharpe pp.203-205.
  48. ^ a b c d e f g #Sharpe p.207.
  49. ^ #Sharpe-2 p.66
  50. ^ #Sharpe p.213.
  51. ^ #Sharpe p.216.
  52. ^ a b #Sharpe p.238.
  53. ^ #Sharpe p.234.に捩率が0の場合とそうでない場合にわけて考える旨の記載がある。
  54. ^ a b c #Sharpe pp.386-387.

注釈

  1. ^ カルタン幾何学を説明した日本語の文献が見つからなかったので、本項の専門用語はいずれも本項執筆者が暫定的に訳したものである。
  2. ^ 厳密には、M上の人と同一視できるのは、基底が右手系の場合だけで、左手系の場合はその人を"左右反転"する必要があるが、以後この問題は無視する
  3. ^ この定義ではという同一視を用いている。ここでeGの単位元である。
  4. ^ G被覆空間とすると、Gは同型なリー代数を持つ。
  5. ^ [17]ではAdにこれ以上の仮定を課していないが、実際の議論ではAdに対応するリー群Gの随伴表現への制限である事を用いているので、以下、本項でもこれを仮定する。なお、随伴表現に対応するリー群Gの取り方に依存せずwell-definedである。
  6. ^ #Sharpe p.174によれば、この仮定は必須ではないが、この仮定を外しても特に得られるものはないとの事である。
  7. ^ クライン幾何学の定義ではが連結な事を仮定していたが、ここでそれは仮定しない[19]
  8. ^ が効果的でないと、の各ファイバーはと同型なものになってしまうため、H-主バンドルにならない。
  9. ^ a b クライン幾何学の場合はM上の左不変ベクトル場に相当する[43]
  10. ^ 「捩率」という言葉にはアフィン接続の「捩率」曲線の「捩率」という2つの異なる意味があるが、ここでいう捩率は前者に相当するものである。アフィン接続の捩率との関係は後述する。
  11. ^ カルタン幾何学が一階である事を利用しているのはの単射性を保証する部分だけであり、それ以外の部分は一階でなくても成立する。
  12. ^ なお、リー代数の分野では、が半単純なイデアルとアーベルなイデアルの直和で書けるときに簡約可能であると呼ぶが、本項で挙げた定義はこの簡約可能性とは別概念である[32]。なお、単射で、しかもがこの意味で簡約可能であれば、は本項の意味で簡約可能である[32]
  13. ^ なお、#Sharpe pp.364-365.は「接続形式⇒カルタン接続」の方ではを仮定しているが、証明を読めば分かるように、実際にはこの仮定は必要ない。#Sharpeもp.362.の定理のステートメントではこの仮定に触れておらず、単なるミスと思われる。また#Sharpeもp.362.ではカルタン形式をと表記しているが、この形に書けるのはユークリッド幾何学(もしくはより一般にアフィン幾何学)をモデル幾何学としている場合であり、一般の簡約可能なモデル幾何学の場合は必ずしもこの形に書けないので、ここもミスと判断した。
  14. ^ なおこの式の右辺は文献[37]では、Xの水平リフトをYとしてとしているが、これは本項で挙げたに等しい。理由は以下の通りである。まず普遍共変微分の定義よりであり、水平リフト(詳細は接続 (ファイバー束)を参照)とはとなるYの中でとなるもののことである。 そして本項のとなり、しかものうち水平成分の方向のみを考えているので、。以上のことからである。
  15. ^ なお、に対しとなるpは複数あるため、 としてどのpにおける接ベクトルを取るかの自由度があるが、どのpにおける接ベクトルを選んでも結果は変わらない。
  16. ^ ここでは#Sharpe p.209.にあわせて「曲線の発展」という言い方にしたが、同書p.119.では同じ概念を「の発展」(: development of ω along starting at g)という言い方をしている。前者がカルタン幾何学の説明であるのに対し、後者はダルブー導関数の説明に関するものである事が言い方を変えている理由であると思われるので、ここでは前者の言い方を採用した。
  17. ^ 文献[41]ではの定義域をループ空間ではなく基本群としているが、はホモトピー不変ではないので、定義域はループ空間であると判断。なお、文献[42]では定義域を基本群としているが、これはこの文献ではカルタン幾何学が平坦な事を仮定している為、がホモトピー不変になるからである。
  18. ^ a b すなわち、に対し、Aを通るG上の左不変ベクトル場によるgからの1-パラメーター変換の軌跡の事。
  19. ^ [41]には「Gの元の1-パラメーター変換群」とあるが1-パラメーター変換群はリー代数に対して定義するものなので「の元の1-パラメーター変換群」の誤記と判断。
  20. ^ ユークリッド空間の合同変換群のリー代数からを選び、の積分曲線のへの射影を考えると螺旋になる。
  21. ^ a b すでに指摘したように、モデル幾何学 Adに対応するリー群Gの随伴表現である事が暗に仮定されている。
  22. ^ 発展の定義はωがカルタン接続の場合に対して与えたが、一般にリー代数に値を取る1-形式に対しても同様にして発展の存在一意性を示すことができるので、「に関する発展」という言葉は意味を持つ。一般の場合の定理のステートメントはダルブー導関数の項目を参照。
  23. ^ 文献[48]ではPの連結を明示的には仮定していないが、Pが連結ではないとHorの定義が基点に依存してしまうため、暗に仮定されていると判断した。
  24. ^ 文献[48]のステートメントではGの連結性を明示していないが、証明中でGの連結性を使っているため、連結性を明記した。
  25. ^ #Sharpeでは、まず一般の1-形式ωに対し完備性を定義し、カルタン接続ωが完備な事をもってカルタン幾何学の完備性を定義している。ここでP上1-形式ωが完備であるとは、以下を満たす事を言う(#Sharpe pp.69. 129):P上の任意のベクトル場Xに対し、によらず定数であれば、任意のおよび任意のに対しが定義可能である。ωがカルタン接続であれば、が定数となるベクトル場とはすなわち、for と書けるベクトル場の事であるので、ここで挙げた定義と一致する。なお文献[49]ではAが時間変化する事を許すより強い完備性の定義を採用している(が、両定義の関係については明記されていないので不明)。
  26. ^ ここでいう「定数倍を除いて一意」とは2つの計量gg'に対し、Mの点uに依存しない定数kが存在し、となるという意味である。
  27. ^ ユークリッド幾何学をモデルとするカルタン幾何学の場合にカルタン幾何学の意味での捩率がKoszul接続の捩率テンソルと同一な事はすでに示した
  28. ^ 英語では、「捩率」はtorsion、「ねじれのない転がし」の「ねじれ」はtwistであり、両者は無関係な概念である。





英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  
  •  カルタン幾何学のページへのリンク

辞書ショートカット

すべての辞書の索引

「カルタン幾何学」の関連用語

カルタン幾何学のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



カルタン幾何学のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのカルタン幾何学 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS