電気 概念

電気

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2018/08/28 17:44 UTC 版)

概念

電荷

電荷とは、ある種の素粒子が持つ性質であり、物理学において自然界の4つの根源的な基本相互作用の一つである電磁気力の元となる。電荷は原子内にもともとあり、よく知られる担体としては電子陽子がある。また電荷は保存量であり、孤立系内の電荷量は系内でどんな変化が起きても変化しない[17]。孤立系内では電荷は物体から物体へ転送され、その転送は直接的な接触の場合もあるし、金属の導線などの伝導体を伝わって行われることもある[18]静電気とは電荷が物体に(不均衡に)存在する状態であり、通常異なった素材をこすり合わせることで電荷が一方からもう一方に転送されて生じる。

箔検電器に電荷を蓄えると、金属箔が電荷によって反発して開く。

電荷が存在すると電磁気力が発生する。電荷が互いにを及ぼしあう現象は古くから知られていたが、その原理は古代には分かっていなかった[19]。ガラス棒を布でこすって帯電(電荷を帯びること)させ、それを紐でつるした軽いボールに触れさせると、ボールが帯電する。同様のボールを同じようにガラス棒で帯電させると、2つのボールは互いに反発しあう。しかし一方をガラス棒で帯電させ、もう一方を琥珀棒で帯電させると、2つのボールは互いに引き付け合う。このような現象を研究したのが18世紀後半のシャルル・ド・クーロンで、彼は電荷には2種類の異なる形態があると結論付けた。すなわち、同じ種類の電荷で帯電したものは反発しあい、異なる種類の電荷で帯電したものは引き付け合う[19]

この力は荷電粒子自身にも働くため、電荷は物体表面に互いに距離をとるように一様に分布する傾向がある。この電磁気力の強さはクーロンの法則で定式化されており、互いの電荷の積に比例し、距離の2乗に反比例する[20][21]。電磁気力は強い相互作用に次いで強い力だが[22]、強い相互作用とは異なりあらゆる距離に働く[23]。ずっと弱い重力相互作用と比較すると、2つの電子が電磁気力で反発しあう力はそれらが重力で引き付け合う力の1042倍である[24]

電子と陽子の電荷は極性が逆であり、物体全体の電荷は正の場合と負の場合がありうる。一般に電子の電荷を負、陽子の電荷を正とする。この習慣はベンジャミン・フランクリンの業績に由来する[25]。電荷量は記号 Q で表され、その単位はクーロンである[26]。電子はどれも同じ電荷量を持ち、その値は約 −1.6022×10−19 クーロンである。陽子は同じ大きさの極性が逆の電荷量を持つので +1.6022×10−19 クーロンとなる。電荷は物質だけでなく反物質にもあり、それぞれに対応する反粒子は大きさが等しく極性が逆の電荷量を持つ[27]

電荷量を測定する手段はいくつかある。検電器は最初の電荷測定機器だが、今では授業での実験などでしか使われない。今では電子式のエレクトロメータがよく使われている[18]

電流

電荷を持った粒子の移動によって、電流が発生し、その強さはアンペアを単位として計られる。どんな荷電粒子(電荷担体)でも移動することで電流を形成できるが、電子が最も一般的である。

歴史的な慣習により、電流の流れる向きは正の電荷の流れる向きとされており、電源の正極から負極に流れるとされる。負の電荷を持つ電子は電荷担体としては最も一般的だが、電気回路での電流の流れる向きと電子の移動する向きは反対である[28]。しかし、状況によっては電流の向きと荷電粒子の移動する向きが一致する場合もあるし、荷電粒子が両方向に同時に移動することもある。様々な状況で電流の流れる方向を便宜的に定めるために、このような規定がある。

電弧は目に見える電流の一種である。

物質を電流が流れる過程を電気伝導と呼び、その性質は流れる荷電粒子と物質の性質によって様々である。金属の場合は電子が流れ、電気分解においてはイオン(電荷を帯びた原子)が液体中を流れる。粒子自体の移動速度は極めて遅く、せいぜい毎秒数ミリメートルだが[29]、それによって形成される電場光速に近い速度で伝播する。そのため、電気信号は導線上で極めて高速に伝送される[30]

電流はいくつかの目に見える現象を引き起こし、歴史的にはそれらが電流の存在を確認する手段でもあった。水に電流を流すと分解されるという現象は1800年にウィリアム・ニコルソンとアンソニー・カーライルが発見した。これがいわゆる電気分解である。そこからさらに研究が進み、1833年にマイケル・ファラデー電気分解の法則を解明した[31]電気抵抗のある物質を電流が流れるとき、局所的な発熱がある。これを研究したのがジェームズ・プレスコット・ジュールで、1840年に数学的に定式化したジュールの法則を導き出した[31]。電流に関する最も重要な発見をしたのはハンス・クリスティアン・エルステッドで、1820年に講義の準備をしているときに導線に電流を流したときに近くにあった方位磁針が振れることに気づいた[32]。これが電気と磁気の基本的相互作用の発見であり、そこから電磁気学が発展することになった。

工学や実用的観点では、電流を直流 (DC) と交流 (AC) に分類することが多い。これは電流が時間と共に変化するかしないかを示した用語である。直流は電池などが発する電流であり、常に一方向に流れる電流である[33]。交流は電流の流れる向きが定期的に逆転する場合を指す。交流の電流の強さの時間変化は正弦波を描くことが多い[34]。したがって、交流が流れる導体内では電荷(電子)が一方向に進むことはなく、短い距離を行ったり来たりすることになる。交流の電流の強さをある程度以上の時間で平均するとゼロになるが、エネルギーはある方向に運搬され、次に反対方向に運搬される。交流には定常的な直流では見られない特性があり、インダクタンス静電容量に影響を受ける[35]。そういった特性は電源を入れた直後など回路の過渡現象が主題となる場合に重要となる。

電場

の概念は、マイケル・ファラデーによって導入された。電場は電荷によってその周囲の空間に形成され、その電場内に存在する他の電荷に力を及ぼす。2つの電荷の電場の振る舞いは、ちょうど2つの質量の重力場のそれと似ており、広がりは無限だが互いに及ぼしあう力は距離の2乗に反比例する[23]。ただし、電場と重力場には大きな違いが1つある。重力は常に引き付け合う力だが、電場は引き付け合う場合と反発しあう場合がある。惑星のような巨大な物体は全体としてほとんど電荷を帯びていないため、遠距離の電場は通常ゼロである。そのため宇宙規模の距離では本来弱いはずの重力が支配的になる[24]

平面導体上の正電荷が作る電気力線

電場は空間の位置によって変化し[36]、ある位置に正の単位電荷量を静止させて置いたとき、その電荷が受ける力の強さがその位置の電場と定義される[37]。この概念上の電荷を試験電荷と呼び、自身の電場が影響を及ぼさないようほとんどないくらいに小さく、しかも磁場を生じないために決して動かないものとする。電場は定義上からであり、力はベクトル量である。つまり、電場自身もベクトル量であり、大きさと方向がある。明らかに電場はベクトル場である[37]

静止した電荷が形成する電場を研究する分野が静電気学である。電場は空間の各点における方向に沿って描いた想像上の曲線で視覚化できる。この概念を導入したのはファラデーで[38]、これを「電気力線」と呼び、今も時折見かける。正の点電荷をその電場内で動かそうとした場合、点電荷が通る経路は電気力線に沿ったものになる。ただしこれは物質的存在とは無関係の想像上の概念であり、電気力線の間も含めて空間全体に電場は存在する[38]。静止した電荷から発する電気力線にはいくつかの特性がある。まず、電気力線は正の電荷を始点とし、負の電荷を終点とする。次に、良導体がある場合は常に直角に入っていく。さらに、電気力線同士が交差することはない[39]

中空の導体では電荷は常にその外側の表面に分布する。従って、その内部のどの位置でも電場はゼロとなる[40]。これがファラデーケージの動作原理であり、金属殻で囲まれた内部は外界の電場から隔離される。

静電気学の知識は高電圧装置の設計において重要である。電場を満たしている媒体には必ず耐えられる電場の強度(電界強度)の限界がある。電界強度がその限界を超えると絶縁破壊がおき、帯電した部分の間に電弧によるフラッシュオーバーが生じる。例えば空気の場合、電極の間が狭いなら電界強度が30kV毎センチメートルを越えると電弧が生じる。電極間の距離が大きい場合は限界がさらに低くなり、1kV毎センチメートルでも電弧を生じることがある[41]はこの現象が自然界で発生したもので、上昇気流によって地面と隔てられて電荷を蓄えた雲が電場を生じ、その強度が空気の限界を超えたときに発生する。大きな雷雲の電位は100MVにもなり、その放電エネルギーは最大で250kWhほどになる[42]

電界強度は近くに導体があると大きく影響され、特に尖った導体の先端部分に電気力線が集中する。この原理を応用したのが避雷針で、その尖った先端が周辺で発生する雷を引き寄せ、建物を守ることになる[43]

電位

単三乾電池。"+"記号は乾電池の電極間の電位差による極性を表している。

電位の概念は電場の概念と密接な関係がある。電場内に小さな電荷を置こうとすると力を受け、その力に逆らって電荷をその場所に置くことは仕事となる。ある位置の電位とは、単位試験電荷を無限遠からその位置までゆっくり運ぶのに要するエネルギーと定義される。一般にその単位はボルトであり、1ボルトとは無限遠から1クーロンの電荷をその位置に運んでくることが1ジュールの仕事となる位置の電位である[44]。この電位の定義は公式なものだがあまり実用的でない。より実用的な定義として電位差すなわち電圧がある。こちらは単位電荷を2地点間で移動させるのに要するエネルギーと定義される。電場は「保存性」という特殊な性質があり、試験電荷の移動に際して移動経路と移動に必要なエネルギーは無関係である。2地点間の任意の経路で同じエネルギーを要するので、電位差は一意に定まる[44]。ボルトはむしろ電位差の単位として認識されており、電圧は日常的によく使われる。

実用においては、電位の比較・参照の際の基準を定義した方が便利である。定義上は無限遠がそれにあたるが、より実用的には地球自体がそのどこをとっても同じ電位だと仮定することで基準点となる。この基準点をアースまたは接地と呼ぶ。地球は正及び負の電荷の無限の源泉とみなすことができ、そのため電気的には帯電していないし、帯電させることもできないと見なせる[45]

電位はスカラー量であり、方向はなく大きさだけの量である。これは重力場における高さと似ている。ある高さで物体を離すと重力を発している重力源に向かって落ちていく。同様に電荷をある電位に置くと電場の電気力線に沿って「落ちて」いく[46]。地図に同じ高さの地点を結んだ等高線が描かれるように、電場においても同じ電位の地点を結んだ等電位線を描くことができる。等電位線は電気力線とは直角に交わる。また、電気伝導体の表面は電位が等しいため、電気伝導体の表面とは平行になる。仮に伝導体表面に電位差があってもその電位差をなくすように電荷が移動して等電位になる。

電場は正式には単位電荷に及ぼされる力と定義されているが、電位の概念を使えばもっと実用的で等価な定義が可能である。すなわち、電場とは電位の局所的勾配である。通常ボルト毎メートルで表され、電位の勾配がもっともきつい方向(つまり等電位線が最も密になっている方向)が電場の方向となる[47]

電磁気学

電流の周囲には磁場がある。

1821年、エルステッドは電流の流れる導線の周囲に磁場が存在することを発見し、電気と磁気に直接的な関係があることがわかった。さらにその相互作用は当時自然界に存在することがわかっていた重力や静電気力とも異なるようだった。方位磁針にかかる力は単に電流の流れる導線との間の引力や斥力といったものではなく、それとは直角な方向の力である[32]。エルステッドはこれを「電気的衝突は回転するように働く」とやや不明瞭に表現した。この力は電流の向きにも依存し、電流を逆向きに流すと力の向きも反対になる[48]

エルステッドはその発見を完全には解明しなかったが、その現象が相互的であることは述べている。すなわち、電流が磁石に力を及ぼすと同時に、磁場が電流に力を及ぼすということである。この現象をさらに研究したのがアンドレ=マリ・アンペールで、2つの平行な導線にそれぞれ電流を流すと相互に力を及ぼすことを発見した。同じ方向に電流を流すと2つの導線が引き付けあい、逆方向に電流を流すと反発しあう[49]。この相互作用はそれぞれの電流によって生じる磁場同士が介在して起きるもので、アンペアという単位の定義にもこの現象が使われている[49]

電動機は電磁気学の重要な現象を利用している。電流が磁場を通ると電流および磁場の向きに対して直角の力を受ける。

この磁場と電流の関係は極めて重要であり、この現象からマイケル・ファラデーが1821年に電動機を発明した。ファラデーの単極電動機永久磁石水銀のプールの中央につき立てられた状態になっている。その上から導線が垂らされていて先端が水銀に浸っている。導線に電流を流すと接線方向に力が働き、導線が磁石の周囲を回るように動く。

1831年、ファラデーは導線を磁場を横切るように移動させるとその両端に電位差が生じることを発見した。これが電磁誘導であり、さらなる研究によってファラデーの電磁誘導の法則と呼ばれる法則を見出した。すなわち、回路に乗じる電位差は、回路を貫く磁束の変化の割合に比例するという法則である。この発見を応用し、ファラデーは銅の円盤を回転させる機械エネルギーを電気エネルギーに変換する世界初の発電機を1831年に発明した。このファラデーの円盤は原始的なもので実用可能なレベルではなかったが、磁気を使って発電できる可能性を示した。

ファラデーとアンペールの業績により、時間と共に変化する磁場が電場を生み出し、時間と共に変化する電場が磁場を生み出すことが示された。つまり、電場または磁場が時間と共に変化すれば、もう一方の場が必然的に誘導される[50]。このような現象は波動の性質を持っており、一般に電磁波と呼ばれる。電磁波については1864年にジェームズ・クラーク・マクスウェルが理論的に解析した。マクスウェルは、電場、磁場、電荷、電流の関係を明確に示す一連の方程式を導出。また彼は電磁波が光速で伝播することを証明し、光も電磁放射の一種であることを示した。マクスウェルの方程式は光、場、電荷を統合し、理論物理学における重要な進歩となった[50]


  1. ^ Jones, D.A., “Electrical engineering: the backbone of society”, Proceedings of the IEE: Science, Measurement and Technology 138 (1): 1–10 
  2. ^ Moller & Kramer 1991, pp. 794-6
  3. ^ a b c Bullock 2005, pp. 5-7
  4. ^ a b Morris 2003, pp. 182-185
  5. ^ The Encyclopedia Americana; a library of universal knowledge (1918), New York: Encyclopedia Americana Corp
  6. ^ a b Stewart 2001, p. 50
  7. ^ Simpson 2003, pp. 6-7
  8. ^ Frood, Arran (27 February 2003), Riddle of 'Baghdad's batteries', BBC, http://news.bbc.co.uk/1/hi/sci/tech/2804257.stm 2008年2月16日閲覧。 
  9. ^ Cardano, Girolamo, De subtilitate rerum. Libri XXI. Nuremberg, Johann Petreius, 1550. Described at [1], facsimile here.
  10. ^ Baigrie 2006, pp. 7-8
  11. ^ Douglas Harper (2001). Online Etymology Dictionary: electric. Retrieved August 29, 2006.
  12. ^ Chalmers 1937, pp. 75-95
  13. ^ Srodes 2002, pp. 92-94 フランクリンが単独でこの実験を行ったかは定かではないが、一般にフランクリン1人の業績とされている。
  14. ^ Uman 1987
  15. ^ a b c Kirby 1990, pp. 331-333
  16. ^ Marković, Dragana, The Second Industrial Revolution, http://www.b92.net/eng/special/tesla/life.php?nav_id=36502 2007年12月9日閲覧。 
  17. ^ Trefil 2003, p. 74
  18. ^ a b Duffin 1980, pp. 2-5
  19. ^ a b Sears 1982, p. 457
  20. ^ 「同種の電気を蓄えた2つの小さな球の間の斥力は、2つの球の中心間の距離の2乗に反比例する」 Charles-Augustin de Coulomb, Histoire de l'Academie Royal des Sciences, Paris 1785.
  21. ^ Duffin 1980, p. 35
  22. ^ National Research Council 1998, pp. 215-216
  23. ^ a b Umashankar 1989, pp. 77-79
  24. ^ a b Hawking 1988, p. 77
  25. ^ Shectman 2003, pp. 87-91
  26. ^ Sewell 1902, p. 18. The Q originally stood for 'quantity of electricity', the term 'electricity' now more commonly expressed as 'charge'.
  27. ^ Close 2007, p. 51
  28. ^ Ward, Robert (1960), Introduction to Electrical Engineering, Prentice-Hall, p. 18 
  29. ^ Duffin 1980, p. 17
  30. ^ Solymar 1984, p. 140
  31. ^ a b Duffin 1980, pp. 23-24
  32. ^ a b Berkson 1974, p. 370 なお、講義の後という文献や講義の最中だったという文献もある。
  33. ^ Bird 2007, p. 11
  34. ^ Bird 2007, pp. 206-207
  35. ^ Bird 2007, pp. 223-225
  36. ^ ほとんど全ての電場は空間の位置によって変化する。例外としては、無限に広がる平面の導体が帯電している場合の電場は一様である。
  37. ^ a b Sears 1982, pp. 469–470
  38. ^ a b Morely & Hughes 1994, p. 73
  39. ^ & Sears 1982, p. 479
  40. ^ Duffin 1980, p. 88
  41. ^ Naidu & Kamataru 1982, p. 2
  42. ^ Naidu & Kamataru 1982, pp. 201–202
  43. ^ Rickards 1985, p. 167
  44. ^ a b Sears 1982, pp. 494–498
  45. ^ Serway 2006, p. 500
  46. ^ Saeli, Sue, Using Gravitational Analogies To Introduce Elementary Electrical Field Theory Concepts, http://physicsed.buffalostate.edu/pubs/PHY690/Saeli2004GEModels/older/ElectricAnalogies1Nov.doc 2007年12月9日閲覧。 
  47. ^ Duffin 1980, p. 60
  48. ^ Thompson 2004, p. 79
  49. ^ a b Morely & Hughes 1994, pp. 92–93
  50. ^ a b Sears 1982, pp. 696–700
  51. ^ a b c d Edminister 1965
  52. ^ a b Dell & Rand 2001, pp. 2-4
  53. ^ McLaren 1984, pp. 182-183
  54. ^ a b Patterson 1999, pp. 44–48
  55. ^ Edison Electric Institute, History of the U.S. Electric Power Industry, 1882-1991, http://www.eia.doe.gov/cneaf/electricity/chg_stru_update/appa.html 2007年12月8日閲覧。 
  56. ^ IndexMundi, China Electricity - consumption, http://www.indexmundi.com/china/electricity_consumption.html 2007年12月8日閲覧。 
  57. ^ National Research Council 1986, p. 16
  58. ^ National Research Council 1986, p. 89
  59. ^ Wald, Matthew (21 March 1990), “Growing Use of Electricity Raises Questions on Supply”, New York Times, http://query.nytimes.com/gst/fullpage.html?res=9C0CE6DD1F3AF932A15750C0A966958260 2007年12月9日閲覧。 
  60. ^ d'Alroy Jones 1967, p. 211
  61. ^ ReVelle 1992, p. 298
  62. ^ Danish Ministry of Environment and Energy, “F.2 The Heat Supply Act”, Denmark´s Second National Communication on Climate Change, オリジナルの2008年1月8日時点によるアーカイブ。, http://web.archive.org/web/20080108011443/http://glwww.mst.dk/udgiv/Publications/1997/87-7810-983-3/html/annexf.htm 2007年12月9日閲覧。 
  63. ^ Brown 2002
  64. ^ Hojjati, B.; Battles, S., The Growth in Electricity Demand in U.S. Households, 1981-2001: Implications for Carbon Emissions, http://www.eia.doe.gov/emeu/efficiency/2005_USAEE.pdf 2007年12月9日閲覧。 
  65. ^ Herrick 2003
  66. ^ a b Nasser 2008, pp. 552–554
  67. ^ Sverre 2000, pp. 301-309
  68. ^ Lipschultz & Hilt 2002, p. 95
  69. ^ Encrenaz 2004, p. 217
  70. ^ a b Lima-de-Faria & Buerger 1990, p. 67
  71. ^ Ivancevic 2005, p. 602
  72. ^ a b Kandel, Schwartz & Jessell 2007, pp. 27-28
  73. ^ Davidovits 2007, pp. 204-205
  74. ^ Van Riper 2002, p. 69
  75. ^ a b c d e f Van Riper 2002, p. 71







電気と同じ種類の言葉


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

「電気」に関係したコラム

  • 株式上場企業の業種分類

    日本の株式上場企業は、東京証券取引所(東証)をはじめとする証券取引所の独自の基準により、業種別に分類されています。例えば、東京証券取引所(東証)の場合、業種分類は「業種別分類に関する取扱い要領」により...

  • 株式市場の01銘柄とは

    株式市場の01銘柄とは、4桁の証券コードのうち下2桁が01で終わる証券コードの銘柄のことです。01銘柄は、その業種の代表的な銘柄であることが多く、株価の値動きは市場関係者から注目されています。次の表は...

  • CFDの銅相場の見方

    銅は、熱や電気を伝導したり、腐食に耐えられるなどの特性から工業用の金属として用いられています。銅の主な用途は送電線や電気製品などが挙げられます。銅は、工業用金属としては鉄、アルミニウムに続く消費量です...

  • 株365の日経225証拠金取引の見方

    株365の日経225証拠金取引は、日経平均株価(日経225)に連動して値動きする銘柄です。そのため、日経平均株価の値動きや構成銘柄の特徴を知ることで日経225証拠金取引の値動きを予測できます。日経平均...

  • ETFの銘柄一覧

    ETFの銘柄数は2012年9月の時点で約140あります。そして、いずれの銘柄にも価格の連動となる対象の商品があります。ここでは、ETFの銘柄をジャンルごとに紹介します。表の「コード」は株式コード、「市...

  • ETFを始めるための最低資金は

    ETFを始めるための最低資金はいくらでしょうか。ETFの取引では売買代金に加えて取引手数料などの費用がかかるため、最低資金は次の計算式で求めることができます。資金=売買代金+取引手数料+その他費用売買...

辞書ショートカット

カテゴリ一覧

全て

ビジネス

業界用語

コンピュータ

電車

自動車・バイク

工学

建築・不動産

学問

文化

生活

ヘルスケア

趣味

スポーツ

生物

食品

人名

方言

辞書・百科事典

すべての辞書の索引

「電気」の関連用語

電気のお隣キーワード

   

英語⇒日本語
日本語⇒英語
   
検索ランキング



電気のページの著作権
Weblio 辞書情報提供元は参加元一覧にて確認できます。

  
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの電気 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2018 Weblio RSS