遠近法 歴史

遠近法

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2020/09/13 23:41 UTC 版)

歴史

初期の発展

ペルジーノのこの『ペテロへの鍵の授与』(1481年1482年作) というフレスコ画では遠近法が用いられている。この絵のあるシスティーナ礼拝堂ルネサンスローマへ伝える役割を果たした。

遠近法以前、絵画や線画などではその精神的主題によって対象物を描き分けてきた。特に中世の美術では絵画は写実性ではなく象徴性が重んじられ、距離によって人物を大小に描き分けることなどせず、ただ距離を表す唯一の手法は「遠くの人物は手前の人物の陰に隠れる」ことだけだった。

もっとも初期の遠近法は、紀元前5世紀頃の古代ギリシャ舞台美術に使われたものだった。舞台の上に奥行きを与えるために、平面パネルを置いてその上に奥行きのある絵を描いたという。哲学者アナクサゴラスデモクリトスはその透視図法に幾何学的理論を当てはめた。アルキビアデスは自分の家にこういった透視図を飾ったという。ユークリッドは透視図法に関して数学的な理論を打ち立てたが、これが現代の画法幾何学と全く同じものであるかについては論争があり定説がない。

11世紀ペルシャ数学者で哲学者でもあったイブン・アル=ハイサムは、その著作で視点に投影される光は円錐形をなす事に触れており、これは対象物を写実的に描画するもっとも基本的な理論となるものだった。だがアル=ハイサムの関心は絵画ではなく光学にあったため、この理論が絵画に利用されることはなかった。

中世以後初めて透視法的表現を用いたのは、13世紀 - 14世紀のイタリアの画家チマブーエ(「荘厳の聖母[3]」)、ピエトロ・カヴァッリーニ(「聖母の誕生[4]」)、ドゥッチョ・ディ・ブオニンセーニャ(「荘厳の聖母」)らであった。ルネサンスの先駆者ジョット・ディ・ボンドーネ代数を利用した透視図法を試みている。しかし線形比率の問題は等間隔に置かれた複数の線形間の距離が正弦依存して減少することであり、各々の線形比率を決定するには帰納的な比率の適用が不可欠となる。これは20世紀になってエルヴィン・パノフスキーによってはじめて解決されたものである。ジョットは作品「大祭司カヤファの前のイエス[5]」ではじめて自らの透視図法を利用した。それは現代の画法幾何学と同じものではないが相応の奥行き感を表しており西洋絵画における大きな前進であった。ジョットの透視図法は精密の度を増してゆき(「礼拝堂の眺め[6][7]」)[8]、また、ジョットを承けたアンブロージョ・ロレンツェッティは、遠ざかる平行線を一点で消失するように描いている(「聖告[9]」)[10]

遠くにあるものが小さく描かれる、あるいは、描き手から遠ざかる平行線が互いに近づくといった表現は、イタリア以外の地域でも認められる(ロベルト・カンピンメロードの祭壇画」、ヤン・ファン・エイクアルノルフィーニ夫妻像」「ルッカの聖母[11])。初期フランドル派の作品はイタリアへと輸出され、フィレンツェのルネサンス遠近法に影響を与えた。

数学的な基礎

ジョットから100年後の1400年代初め、建築家ブルネレスキは鏡面にフィレンツェ建築の輪郭を写し取り、遠近法を幾何学的な手法で実証することに成功した。かれはあらゆる建築物の輪郭が、すべて地平線に集約されることに気付いた。そこで彼はサンタ・マリア・デル・フィオーレ大聖堂の、当時未完成であったサン・ジョバンニ洗礼堂を正確な透視図法で描写し、洗礼堂入り口に面してその絵画を置き、相対する位置に鏡を設置した。絵画には小穴が開けられており、絵画の裏からその小穴を覗くと正面の鏡に「未完成であるはずの」洗礼堂内部が映し出されたという。それは本物と見まがうばかりであった。

そのあとすぐフィレンツェのあらゆる画家は幾何学的な透視図法を利用し始めた。中でもドナテッロが「キリストの誕生」で描いた、厩舎のチェック模様の床は特筆されるものである。それは厳密には正確さを欠いていたが、幾何学的な透視図法の基本原則に沿って描かれたものであった。直線はすべて消失点へと収束し、距離によって狭まる直線幅は正確な描画が行われていた。この手法は15世紀西洋美術において不可欠なテクニックとなった。遠近法によって、それまでバラバラな要素の組み合わせだった絵画が、一つの統一された場面を表現できるようになった。

実作としては、ギベルティの彫刻レリーフ1425年 - )やマザッチョの描いた絵画(1426年 - )が最も早いものである。透視法によって三次元の世界を二次元の世界に移しながら、奥行きのある表現が可能になった。

フィレンツェでは遠近法を利用した芸術が急速に開花し、ブルネレスキなどその数学的理論を理解する画家もいたが、それをおおっぴらにすることはなかった。彼は友人に数学者のトスカネッリがおり、それも数学の理解の一助になったと思われる。数十年後ブルネレスキの友人であり人文学者のアルベルティは透視図法の詳細な論文『絵画論』(1435年)を書いている。この論文の最大の功績は円錐図法の小難しい数式を示すことではなく、投影面とそこを通過する光点の道筋を公式化・理論化したことだった。かれは2つの相似三角形と昔ながらのユークリッド幾何学を用いて、投影面への座標を算出することが出来ることを示した。

1474年ピエロ・デラ・フランチェスカはその著作で視野内の全ての物体に遠近法を適用する手法を示した。アルベルティの数学的な解説をよりわかりやすく、図入りで解説したのも彼の著作が最初である。

フィレンツェで発見された遠近法の原理はしばらくこの地を出ることが無く、イタリアで起こっているこの大発見が他の国の画家にも広まるのはもう少し後になる。

レオナルド・ダ・ヴィンチ

ブルネレスキの透視図法は、視点に非常に近い対象に対する考慮がされていなかったため、ダ・ヴィンチは自ら光線の軌道を厳密に計算し直し、より正確なものを構築した。それだけでなくダ・ヴィンチは新たな発見もした。幾何学的な透視図法に「遠くのものは色が変化し、境界がぼやける」という空気遠近法の概念を組み合わせたのだ。彼は遠近法の理解が芸術にとって非常に重要であることを悟り、「実践は強固な理論のもとでのみ構築される。遠近法こそその道標であり、入り口でもある。遠近法無しではこと絵画に関して期待できるものは何もない」と述べている。

ただし、彼の遠近法は正しいものと比較すると、パースが強く設定されており、誤りがある。

ルネサンスの前後での遠近法の変化

東京芸術大学名誉教授である辻茂は自著「遠近法の発見」のなかで、ルネサンス以前の距離点がない透視図法を「天使の遠近法」、ルネサンス以降の距離点がある透視図法を「地上の遠近法」と名付けている[10]


  1. ^ 広義においては、空気遠近法、色彩遠近法、消失遠近法、曲線遠近法、上下遠近法、重畳遠近法、斜投象法など、この他にも多数存在する遠近表現の総称として、この語が用いられます。 遠近法 - 武蔵野美術大学 造形ファイル
  2. ^ 狭義においては、ルネサンスの時代に確立された「線遠近法」を指します。遠近法 - 武蔵野美術大学 造形ファイル
  3. ^ 荘厳の聖母
  4. ^ 聖母の誕生
  5. ^ 大祭司カヤファの前のイエス
  6. ^ 1
  7. ^ 2
  8. ^ Hoffmann, Volker (2010) "Giotto and Renaissance Perspective", Nexus Network Journal, 12-1, pp.5-32, Basel: Springer.
  9. ^ 聖告
  10. ^ a b 辻茂 著 『遠近法の発見』 現代企画室 1996年 ISBN 978-4-7738-9615-2
  11. ^ Elkins, James (1991) "On the Arnolfini Portrait and the Lucca Madonna: Did Jan van Eyck Have a Perspectival System?", The Art Bulletin, 73-1, pp.53-62, College Art Association.
  12. ^ 消失点を一つ持つ「一点透視法」 透視図法 - MAU造形ファイル
  13. ^ 柿沼範久 石塚久郎・鈴木晃仁(編)「フライト・シミュレーターのヴィジョン」『身体医文化論:感覚と欲望』 慶應義塾大学出版会 2002年、ISBN 4-7664-0924-8 pp.421-433.




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「遠近法」の関連用語

遠近法のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



遠近法のページの著作権
Weblio 辞書情報提供元は参加元一覧にて確認できます。

  
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの遠近法 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2020 Weblio RSS