Depth (ring theory)とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > Depth (ring theory)の意味・解説 

深さ (環論)

(Depth (ring theory) から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/10/23 01:38 UTC 版)

可換およびホモロジー代数において、深さ深度 (depth) は加群の重要な不変量である。深さはより一般に定義できるが、考察される最も一般的なケースは可換ネーター局所環上の加群のケースである。この場合、加群の深さはAuslander-Buchsbaum の公式英語版によってその射影次元と関係する。深さのより初等的な性質は不等式

である、ただし dim M は加群 Mクルル次元を表す。深さはよい性質をもつ環と加群のクラスを定義するのに使われる。例えばコーエン-マコーレー環と加群で、これは等号が成り立つ。

定義

R を可換ネーター環、IR のイデアル、MIMM に真に含まれるという性質をもつ有限 R-加群とする。このとき MI-深度 (I-depth) は、 Mgrade とも呼ばれるが、

と定義される。定義によって、環 R の深度は自身の上の加群としてのその深度である。

David Rees による定理によって、深度は正則列の概念を用いて特徴づけることもできる。

定理 (Rees)

R を可換ネーター局所環でその極大イデアル とし、M を有限生成 R-加群とする。このとき M のすべての極大正則列 x1,..., xn、ただし各 xi に属する、は M-深度と同じ長さ n をもつ。

深さと射影次元

可換ネーター局所環上の加群の射影次元と深さは互いに相補的である。これは Auslander–Buchsbaum の公式の内容である。これは基礎理論的に重要であるばかりでなく、加群の深さを計算する効率的な方法を提供してくれる。R を可換ネーター局所環でその極大イデアルを とし、M を有限生成 R-加群とする。M の射影次元が有限であれば、Auslander–Buchsbaum の公式が述べているのは

深さ0の環

可換ネーター局所環 R が深さ 0 をもつこととその極大イデアル 素因子であることと同値である。あるいは同じことだが、R の 0 でない元 x が存在して (すなわち x を零化する)。これが意味するのは、本質的に、閉点が埋め込まれた成分英語版であるということだ。

例えば、環 (ただし k は体)は原点に埋め込まれた二重点をもつ直線 () を表現するが、原点において深度 0 をもつが次元は 1 である。これはコーエン・マコーレーでない環の例を与える。

参考文献




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「Depth (ring theory)」の関連用語

Depth (ring theory)のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



Depth (ring theory)のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの深さ (環論) (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS