鉤股弦の定理とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > デジタル大辞泉 > 鉤股弦の定理の意味・解説 

こうこげん‐の‐ていり【×鉤股弦の定理】

読み方:こうこげんのていり

三平方の定理ピタゴラスの定理)のこと。


ピタゴラスの定理

(鉤股弦の定理 から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2025/04/18 17:30 UTC 版)

ピタゴラスの定理
種類 定理
分野 ユークリッド幾何学
命題 2辺 (a, b) 上の2つの正方形の面積の和は、斜辺 (c) 上の正方形の面積に等しくなる。
数式
バビロニア数学について記された粘土板プリンプトン322

ピタゴラス直角二等辺三角形のタイルが敷き詰められた床を見ていて、この定理を思いついた」などいくつかの逸話が伝えられているが、実際にこの定理にピタゴラス自身が関わった事があるかから全く分かっていない。

ピタゴラスの定理の内容は歴史上の文献にいくつか著されているが、どれだけあるのかは議論がある。ピタゴラスが生まれる前からピタゴラスの定理は広く知られていたと言われるものの、特にユークリッド原論によって数学が体系化されるよりも前の時代だと、定理のように一般化された形ではなく特定の直角三角形の性質に留まるものが多くなる。辺の長さの比が3:4:5のように特殊な直角三角形がピタゴラスの定理の式を満たす事が分かっていたとしても、全ての直角三角形で定理の式が成り立つと理解できていたかは別の話であり、この意味で、ピタゴラスの定理の真の発見者を特定するのは難しい。

判明しているもので最初期のものは、ピタゴラスが生まれる1000年以上前のバビロン第1王朝時代ごろ(紀元前20世紀から16世紀の間)とされる[4][5][6][7]

バビロニアの粘土板プリンプトン322』には、ピタゴラスの定理に関わる要素が数多く含まれている。YBC 7289の裏面にはそれらしい記述がある。

エジプト数学バビロニア数学などにはピタゴラス数についての記述があるが、定理を発見していたかまでは定かではない。ただし、直角を作図するために 3:4:5の直角三角形が作図上利用された可能性がある[8]。紀元前2000年から1786年ごろに書かれた古代エジプトエジプト中王国パピルス "Berlin Papyrus 6619英語版" には定理に関わる部分が欠けている。

周髀算経』におけるピタゴラスの定理の証明(中国語: 句股冪合以成弦冪

中国古代においては、『周髀算経』(紀元前2世紀前後)や『九章算術』の数学書でもこの定理が取り上げられている。中国ではこの定理を勾股定理商高定理等と呼んで説明している。

紀元前3世紀に書かれたユークリッド原論では、第1巻の命題47で言及されている。

インドの紀元前5-8世紀に書かれた『シュルバ・スートラ』などにも定理に関わる文章が見られる[9]。しかし、これはバビロニア数学の影響を受けた結果ではないかという推測もされているが、結論には至っていない[10]

レオナルド・ダ・ヴィンチによるピタゴラスの定理の証明。橙色の部分を 90度回転し、緑色の部分は裏返して図の位置にできる。

「ピュタゴラス(ピタゴラス)の定理」という呼称が一般的になったのは、西洋においても少なくとも20世紀に入ってからである[11]

日本での呼称

日本の和算でも、中国での呼称を用いて鉤股弦の法こうこげんのほう等と呼んでいた[12][13]。「勾(鈎)・股・弦」とはそれぞれ、a2 + b2 = c2 (a < b < c) としたときの a, b, c を表している。

日本の明治時代の中等学校の教科書では「ピュタゴラスの定理」と呼ばれていた。

現在、ピタゴラスの定理は「三平方の定理」とも呼ばれているが、「三平方の定理」と呼ばれるようになったのは1942年(昭和17年)の太平洋戦争開始後のことである[11]

このときに「鉤股弦の定理」とする案などもあったが、末綱恕一(東大教授)の発案で「三平方の定理」に改められたとされる。

ピタゴラス数

3辺の長さが何れも整数である直角三角形は、ピタゴラスの定理の項目の中で古くから知られた[11]。例えば、紀元前1800年ごろのバビロニアの粘土板には、3辺の長さの表(例えば 49612 + 64802 = 81612 のようなもの)が出ている。

a2 + b2 = c2 を満たす自然数の組 (a, b, c)ピタゴラス数 (Pythagorean triple) という。特に、a, b, c互いに素であるピタゴラス数 (a, b, c)原始ピタゴラス数 (primitive Pythagorean triple) と呼ばれる。全てのピタゴラス数は原始ピタゴラス数で (a, b, c) の正の整数倍 (ka, kb, kc) で表されるから、ピタゴラス数のリストを知るには、原始ピタゴラス数が本質的である。

ピタゴラス数 (a, b, c) が原始的であるためには、3つのうちある2つが互いに素であれば十分である。原始ピタゴラス数の小さい方のリストは、c < 100 で、a < b とすると次の通りである[14]

(a, b, c) = (3, 4, 5), (5, 12, 13), (7, 24, 25), (8, 15, 17), (9, 40, 41), (11, 60, 61), (12, 35, 37), (13, 84, 85), (16, 63, 65), (20, 21, 29), (28, 45, 53), (33, 56, 65), (36, 77, 85), (39, 80, 89), (48, 55, 73), (65, 72, 97)

ピタゴラス数の性質

ピタゴラス数 (a, b, c) には、次の性質がある。

  • a または b4 の倍数
  • a または b3 の倍数
  • a または b または c5 の倍数
    • したがって、積 abc60 の倍数である。

自然数の組 (a, b, c) が原始ピタゴラス数であるためには、ある自然数 m, n

  • m, n は互いに素
  • m > n
  • mn の偶奇が異なる(一方が偶数で他方が奇数

を満たすとして、

(a, b, c) = (m2n2, 2mn, m2 + n2) または (2mn, m2n2, m2 + n2)

であることが必要十分である[15][16]。上記の (m, n) は無数に存在し重複がないので、原始ピタゴラス数は無数に存在し、すべての原始ピタゴラス数を重複なく列挙できる。

例えば

(m, n) = (2, 1) のとき (a, b, c) = (3, 4, 5)
(m, n) = (3, 2) のとき (a, b, c) = (5, 12, 13)
(m, n) = (4, 1) のとき (a, b, c) = (8, 15, 17)

である。a < b を満たす原始ピタゴラス数を a の昇順に並べた一覧表は以下のようになる[17]

原始ピタゴラス数の一覧表
# m n a b c
1 2 1 3 4 5
2 3 2 5 12 13
3 4 3 7 24 25
4 4 1 8 15 17
5 5 4 9 40 41
6 6 5 11 60 61
7 6 1 12 35 37
8 7 6 13 84 85
9 8 7 15 112 113
10 8 1 16 63 65
11 9 8 17 144 145
12 10 9 19 180 181
13 5 2 20 21 29
14 10 1 20 99 101
15 11 10 21 220 221
16 12 11 23 264 265
17 12 1 24 143 145
18 13 12 25 312 313
19 14 13 27 364 365
20 7 2 28 45 53
21 14 1 28 195 197
22 15 14 29 420 421
23 16 15 31 480 481
24 16 1 32 255 257
25 7 4 33 56 65
# m n a b c
26 17 16 33 544 545
27 18 17 35 612 613
28 9 2 36 77 85
29 18 1 36 323 325
30 19 18 37 684 685
31 8 5 39 80 89
32 20 19 39 760 761
33 20 1 40 399 401
34 21 20 41 840 841
35 22 21 43 924 925
36 11 2 44 117 125
37 22 1 44 483 485
38 23 22 45 1012 1013
39 24 23 47 1104 1105
40 8 3 48 55 73
41 24 1 48 575 577
42 25 24 49 1200 1201
43 10 7 51 140 149
44 26 25 51 1300 1301
45 13 2 52 165 173
46 26 1 52 675 677
47 27 26 53 1404 1405
48 28 27 55 1512 1513
49 28 1 56 783 785
50 11 8 57 176 185
# m n a b c
51 29 28 57 1624 1625
52 30 29 59 1740 1741
53 10 3 60 91 109
54 15 2 60 221 229
55 30 1 60 899 901
56 31 30 61 1860 1861
57 32 31 63 1984 1985
58 32 1 64 1023 1025
59 9 4 65 72 97
60 33 32 65 2112 2113
61 34 33 67 2244 2245
62 17 2 68 285 293
63 34 1 68 1155 1157
64 13 10 69 260 269
65 35 34 69 2380 2381
66 36 35 71 2520 2521
67 36 1 72 1295 1297
68 37 36 73 2664 2665
69 14 11 75 308 317
70 38 37 75 2812 2813
71 19 2 76 357 365
72 38 1 76 1443 1445
73 39 38 77 2964 2965
74 40 39 79 3120 3121
75 40 1 80 1599 1601

また、フランスの数学者ピエール・ド・フェルマーは一般のピタゴラス数 (a, b, c) に対して、S = 1/2ab(直角三角形の面積)は平方数でないことを無限降下法により証明した[18]

Jesmanowicz 予想

1956年に Jesmanowicz が次の予想を提出した:

(a, b, c) を原始ピタゴラス数、n を自然数とする。方程式:
相似を用いた証明

頂点 C から斜辺 AB に下ろした垂線の足を H とする。△ABC△ACH相似である。ゆえに

三平方の定理の合同による証明

外接円を用いた証明

∠C = 90° のとき、斜辺AB を直径とする円O を描くことができる。

このとき点C から直径AB に下ろした垂線の足を H とし、△CHO に対して三平方の定理を証明する。OA = OB = OC = c, CH = a, OH = b とする。

△AHC ∽ △BHC なので、

HA : HC = HC : HB
(OA − OH) : HC = HC : (OB + OH)
(cb) : a = a : (c + b)
c2b2 = a2
a2 + b2 = c2 ◾️

正方形を用いた証明

正方形を用いた証明

△ABC合同な4個の三角形を右図のように並べると、外側に一辺が a + b正方形(以下「大正方形」)が、内側に一辺が c の正方形(以下「小正方形」)ができる。

(大正方形の面積)=(小正方形の面積)+(直角三角形の面積)× 4

である。大正方形の面積(a + b)2, 小正方形の面積は c2, 直角三角形1個の面積は

正方形を用いた証明の視覚化
  • 正方形を用いた証明2
  • 正方形を用いた証明3
  • 内接円を用いた証明

    △ABC において、内接円の半径 r を用いて面積 S を表すと

    ピタゴラスの定理に依存しない証明

    △ABCa2 + b2 = c2 を満たすとする。線分 ABb2 : a2 に内分する点を D とすると

    ピタゴラスの定理を用いた証明

    B'C' = a, A'C' = b,∠C' = π/2 である直角三角形 A'B'C' において、A'B' = c' とすれば、ピタゴラスの定理より

    余弦定理を用いた証明

    ピタゴラスの定理は既知とすると、それより導かれる余弦定理を用いることができる。△ABC において、a = BC, b = CA, c = AB, C = ∠ACB とおくと、余弦定理より

    外部リンク



    英和和英テキスト翻訳>> Weblio翻訳
    英語⇒日本語日本語⇒英語
      

    辞書ショートカット

    すべての辞書の索引

    「鉤股弦の定理」の関連用語

    鉤股弦の定理のお隣キーワード
    検索ランキング

       

    英語⇒日本語
    日本語⇒英語
       



    鉤股弦の定理のページの著作権
    Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

       
    デジタル大辞泉デジタル大辞泉
    (C)Shogakukan Inc.
    株式会社 小学館
    ウィキペディアウィキペディア
    All text is available under the terms of the GNU Free Documentation License.
    この記事は、ウィキペディアのピタゴラスの定理 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

    ©2025 GRAS Group, Inc.RSS