整拡大
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/12/31 07:46 UTC 版)
![]() | この記事は英語版の対応するページを翻訳することにより充実させることができます。(2024年5月) 翻訳前に重要な指示を読むには右にある[表示]をクリックしてください。
|
可換環論において、可換環 B とその部分環 A について、B の元 b が A 係数のモニック多項式の根であるとき、b は A 上整である(integral over A)という。B のすべての元が A 上整であるとき、B は A 上整である、または、B は A の整拡大(integral extension)であるという。 本記事において、環とは単位元をもつ可換環のこととする。
定義
B を環、A をその部分環とする。b ∈ B が A 上整であるとは、
- 整拡大のページへのリンク