北極圏メタンガス放散とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 北極圏メタンガス放散の意味・解説 

北極圏メタンガス放散

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/01/02 23:56 UTC 版)

北極圏メタンガス放散(ほっきょくけんメタンガスほうさん、Arctic methane emissions)は、北極永久凍土地域の海洋および土壌からのメタンガスの放出をいう。北極地域には埋蔵天然ガスや海底のメタンクラスレート(メタンハイドレート)として、大量のメタンが蓄積されている。[1] メタン放散は長期にわたる自然現象だが永久凍土が地球温暖化により解凍すると、凍結していた大量のバイオマスメタン発酵分解ならびにメタンクラスレートから大量のメタンが放出されることにより[2][3][4][5]、その量が増加する。[6] メタンは強力な温室効果ガスであるため一層温暖化を加速し正のフィードバックサイクルが生じ、その結果地球温暖化が急激かつ不可逆的に進行しうる。[7][8]


  1. ^ Bloom, A. A.; Palmer, P. I.; Fraser, A.; Reay, D. S.; Frankenberg, C. (2010). “Large-Scale Controls of Methanogenesis Inferred from Methane and Gravity Spaceborne Data”. Science 327 (5963): 322–325. Bibcode2010Sci...327..322B. doi:10.1126/science.1175176. PMID 20075250. オリジナルの2018-07-22時点におけるアーカイブ。. https://web.archive.org/web/20180722070217/https://authors.library.caltech.edu/57435/2/Bloom.SOM.pdf 2019年12月3日閲覧。. 
  2. ^ Zimov, Sa; Schuur, Ea; Chapin, Fs 3Rd (Jun 2006). “Climate change. Permafrost and the global carbon budget”. Science 312 (5780): 1612–3. doi:10.1126/science.1128908. ISSN 0036-8075. PMID 16778046. https://www.science.org/doi/10.1126/science.1128908. 
  3. ^ Shakhova, Natalia (2005). “The distribution of methane on the Siberian Arctic shelves: Implications for the marine methane cycle”. Geophysical Research Letters 32 (9): L09601. Bibcode2005GeoRL..32.9601S. doi:10.1029/2005GL022751. 
  4. ^ Shakhova, Natalia; Semiletov, Igor (2007). “Methane release and coastal environment in the East Siberian Arctic shelf”. Journal of Marine Systems 66 (1–4): 227–243. Bibcode2007JMS....66..227S. doi:10.1016/j.jmarsys.2006.06.006. https://www.sciencedirect.com/science/article/abs/pii/S0924796306001874. 
  5. ^ Sayedi, Sayedeh Sara; Abbott, Benjamin W; Thornton, Brett F; Frederick, Jennifer M; Vonk, Jorien E; Overduin, Paul; Schädel, Christina; Schuur, Edward A G et al. (2020-12-01). “Subsea permafrost carbon stocks and climate change sensitivity estimated by expert assessment”. Environmental Research Letters 15 (12): B027-08. Bibcode2020AGUFMB027...08S. doi:10.1088/1748-9326/abcc29. hdl:10852/83674. ISSN 1748-9326. 
  6. ^ Walter, K. M.; Chanton, J. P.; Chapin, F. S.; Schuur, E. A. G.; Zimov, S. A. (2008). “Methane production and bubble emissions from arctic lakes: Isotopic implications for source pathways and ages”. Journal of Geophysical Research 113: G00A08. Bibcode2008JGRG..11300A08W. doi:10.1029/2007JG000569. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2007JG000569. 
  7. ^ Cheng, Chin-Hsien; Redfern, Simon A. T. (23 June 2022). “Impact of interannual and multidecadal trends on methane-climate feedbacks and sensitivity”. Nature Communications 13 (1): 3592. Bibcode2022NatCo..13.3592C. doi:10.1038/s41467-022-31345-w. PMC 9226131. PMID 35739128. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9226131/. 
  8. ^ Christensen, Torben Røjle; Arora, Vivek K.; Gauss, Michael; Höglund-Isaksson, Lena; Parmentier, Frans-Jan W. (4 February 2019). “Tracing the climate signal: mitigation of anthropogenic methane emissions can outweigh a large Arctic natural emission increase”. Scientific Reports 9 (1): 1146. doi:10.1038/s41598-018-37719-9. PMC 6362017. PMID 30718695. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6362017/. 
  9. ^ Saunois, M.; Stavert, A.R.; Poulter, B. (July 15, 2020). “The Global Methane Budget 2000–2017” (英語). Earth System Science Data (ESSD) 12 (3): 1561–1623. Bibcode2020ESSD...12.1561S. doi:10.5194/essd-12-1561-2020. ISSN 1866-3508. https://essd.copernicus.org/articles/12/1561/2020/ 2020年8月28日閲覧。. 
  10. ^ Trends in Atmospheric Methane”. NOAA. 2022年10月14日閲覧。
  11. ^ “Increasing anthropogenic methane emissions arise equally from agricultural and fossil fuel sources”. Environmental Research Letters 15 (7): 071002. (15 July 2020). Bibcode2020ERL....15g1002J. doi:10.1088/1748-9326/ab9ed2. 
  12. ^ “Scientists raise alarm over 'dangerously fast' growth in atmospheric methane”. Nature. (8 February 2022). https://www.nature.com/articles/d41586-022-00312-2 2022年10月14日閲覧。. 
  13. ^ “Improved Constraints on Global Methane Emissions and Sinks Using δ13C-CH4”. Global Biogeochemical Cycles 35 (6): e2021GB007000. (8 May 2021). Bibcode2021GBioC..3507000L. doi:10.1029/2021GB007000. PMC 8244052. PMID 34219915. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8244052/. 
  14. ^ Feng, Liang; Palmer, Paul I.; Zhu, Sihong; Parker, Robert J.; Liu, Yi (16 March 2022). “Tropical methane emissions explain large fraction of recent changes in global atmospheric methane growth rate” (英語). Nature Communications 13 (1): 1378. Bibcode2022NatCo..13.1378F. doi:10.1038/s41467-022-28989-z. PMC 8927109. PMID 35297408. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8927109/. 
  15. ^ Rößger, Norman; Sachs, Torsten; Wille, Christian; Boike, Julia; Kutzbach, Lars (27 October 2022). “Seasonal increase of methane emissions linked to warming in Siberian tundra”. Nature Climate Change 12 (11): 1031–1036. Bibcode2022NatCC..12.1031R. doi:10.1038/s41558-022-01512-4. https://www.researchgate.net/publication/364812576 2023年1月21日閲覧。. 
  16. ^ Walter, K. M.; Chanton, J. P.; Chapin, F. S.; Schuur, E. A. G.; Zimov, S. A. (2008). “Methane production and bubble emissions from arctic lakes: Isotopic implications for source pathways and ages”. Journal of Geophysical Research 113: G00A08. Bibcode2008JGRG..11300A08W. doi:10.1029/2007JG000569. 
  17. ^ Schuur, E. A. G.; McGuire, A. D.; Schädel, C.; Grosse, G.; Harden, J. W. (9 April 2015). “Climate change and the permafrost carbon feedback”. Nature 520 (7546): 171–179. Bibcode2015Natur.520..171S. doi:10.1038/nature14338. PMID 25855454. https://www.nature.com/articles/nature14338. 
  18. ^ Pfeiffer, Eva-Maria; Grigoriev, Mikhail N.; Liebner, Susanne; Beer, Christian; Knoblauch, Christian (April 2018). “Methane production as key to the greenhouse gas budget of thawing permafrost”. Nature Climate Change 8 (4): 309–312. Bibcode2018NatCC...8..309K. doi:10.1038/s41558-018-0095-z. ISSN 1758-6798. http://gfzpublic.gfz-potsdam.de/pubman/item/escidoc:3094899. 
  19. ^ Walter, KM; Zimov, SA; Chanton, JP; Verbyla, D et al. (7 September 2006). “Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming”. Nature 443 (7107): 71–75. Bibcode2006Natur.443...71W. doi:10.1038/nature05040. PMID 16957728. 
  20. ^ Gillis, Justin (2011年12月16日). “As Permafrost Thaws, Scientists Study the Risks”. The New York Times. https://www.nytimes.com/2011/12/17/science/earth/warming-arctic-permafrost-fuels-climate-change-worries.html 2011年12月17日閲覧。 
  21. ^ Vigderovich, Hanni; Eckert, Werner; Elul, Michal; Rubin-Blum, Maxim; Elvert, Marcus; Sivan, Orit; Czimczik, C. I. (2 May 2022). “Long-term incubations provide insight into the mechanisms of anaerobic oxidation of methane in methanogenic lake sediments”. Biogeosciences 19 (8). Bibcode2022GeoRL..4997347P. doi:10.1029/2021GL097347. https://bg.copernicus.org/articles/19/2313/2022/. 
  22. ^ Pellerin, André; Lotem, Noam; Anthony, Katey Walter; Russak, Efrat Eliani; Hasson, Nicholas; Røy, Hans; Chanton, Jeffrey P.; Sivan, Orit (4 March 2022). “Methane production controls in a young thermokarst lake formed by abrupt permafrost thaw”. Global Change Biology 28 (10): 3206–3221. doi:10.1111/gcb.16151. PMC 9310722. PMID 35243729. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9310722/. 
  23. ^ Turetsky, Merritt R. (2019-04-30). “Permafrost collapse is accelerating carbon release”. Nature 569 (7754): 32–34. Bibcode2019Natur.569...32T. doi:10.1038/d41586-019-01313-4. PMID 31040419. 
  24. ^ “Scientists shocked by Arctic permafrost thawing 70 years sooner than predicted” (英語). The Guardian. (2019年6月18日). ISSN 0261-3077. https://www.theguardian.com/environment/2019/jun/18/arctic-permafrost-canada-science-climate-crisis 2019年7月2日閲覧。 
  25. ^ Bernhard, Philipp; Zwieback, Simon; Hajnsek, Irena (2 May 2022). “Accelerated mobilization of organic carbon from retrogressive thaw slumps on the northern Taymyr Peninsula”. The Cryosphere 16 (7): 2819–2835. Bibcode2022TCry...16.2819B. doi:10.5194/tc-16-2819-2022. https://tc.copernicus.org/articles/16/2819/2022/. 
  26. ^ a b c Turetsky, Merritt R.; Abbott, Benjamin W.; Jones, Miriam C.; Anthony, Katey Walter; Olefeldt, David; Schuur, Edward A. G.; Grosse, Guido; Kuhry, Peter et al. (February 2020). “Carbon release through abrupt permafrost thaw”. Nature Geoscience 13 (2): 138–143. Bibcode2020NatGe..13..138T. doi:10.1038/s41561-019-0526-0. ISSN 1752-0894. 
  27. ^ a b Walter Anthony, Katey; Schneider von Deimling, Thomas; Nitze, Ingmar; Frolking, Steve; Emond, Abraham; Daanen, Ronald; Anthony, Peter; Lindgren, Prajna et al. (2018-08-15). “21st-century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes”. Nature Communications 9 (1): 3262. Bibcode2018NatCo...9.3262W. doi:10.1038/s41467-018-05738-9. ISSN 2041-1723. PMC 6093858. PMID 30111815. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6093858/. 
  28. ^ “Permafrost collapse is accelerating carbon release”. Nature 569 (7754): 32–34. (May 2019). Bibcode2019Natur.569...32T. doi:10.1038/d41586-019-01313-4. PMID 31040419. 
  29. ^ a b >Heffernan, Liam; Cavaco, Maria A.; Bhatia, Maya P.; Estop-Aragonés, Cristian; Knorr, Klaus-Holger; Olefeldt, David (24 June 2022). “High peatland methane emissions following permafrost thaw: enhanced acetoclastic methanogenesis during early successional stages”. Biogeosciences 19 (8): 3051–3071. Bibcode2022BGeo...19.3051H. doi:10.5194/bg-19-3051-2022. https://bg.copernicus.org/articles/19/3051/2022/. 
  30. ^ Cooper, M.; Estop-Aragonés, C.; Fisher, J. (26 June 2017). “Limited contribution of permafrost carbon to methane release from thawing peatlands”. Nature Climate Change 7 (7): 507–511. Bibcode2017NatCC...7..507C. doi:10.1038/nclimate3328. https://www.nature.com/articles/nature14338. 
  31. ^ Estop-Aragonés, Cristian; Cooper, Mark D.A.; Fisher, James P. (March 2018). “Limited release of previously-frozen C and increased new peat formation after thaw in permafrost peatlands”. Soil Biology and Biochemistry 118: 115–129. doi:10.1016/j.soilbio.2017.12.010. 
  32. ^ Estop-Aragonés, Cristian (13 August 2018). “Respiration of aged soil carbon during fall in permafrost peatlands enhanced by active layer deepening following wildfire but limited following thermokarst”. Environmental Research Letters 13 (8): 085002. Bibcode2018ERL....13h5002E. doi:10.1088/1748-9326/aad5f0. 
  33. ^ Gillis, Justin (2011年12月16日). “As Permafrost Thaws, Scientists Study the Risks”. The New York Times. オリジナルの2017年5月19日時点におけるアーカイブ。. https://web.archive.org/web/20170519052405/http://www.nytimes.com/2011/12/17/science/earth/warming-arctic-permafrost-fuels-climate-change-worries.html?pagewanted=all 2017年2月11日閲覧。 
  34. ^ Schellnhuber, Hans Joachim; Winkelmann, Ricarda; Scheffer, Marten; Lade, Steven J.; Fetzer, Ingo; Donges, Jonathan F.; Crucifix, Michel; Cornell, Sarah E. et al. (2018). “Trajectories of the Earth System in the Anthropocene”. Proceedings of the National Academy of Sciences 115 (33): 8252–8259. Bibcode2018PNAS..115.8252S. doi:10.1073/pnas.1810141115. ISSN 0027-8424. PMC 6099852. PMID 30082409. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6099852/. 
  35. ^ Intergovernmental Panel on Climate Change (2023-07-06). Climate Change 2021 – The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (1 ed.). Cambridge University Press. doi:10.1017/9781009157896.011.. ISBN 978-1-009-15789-6. https://www.cambridge.org/core/product/identifier/9781009157896/type/book 
  36. ^ Carbon Emissions from Permafrost” (英語). 50x30 (2021年). 2022年10月8日閲覧。
  37. ^ Natali, Susan M.; Holdren, John P.; Rogers, Brendan M.; Treharne, Rachael; Duffy, Philip B.; Pomerance, Rafe; MacDonald, Erin (10 December 2020). “Permafrost carbon feedbacks threaten global climate goals”. PNAS 118 (21). doi:10.1073/pnas.2100163118. PMC 8166174. PMID 34001617. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8166174/. 
  38. ^ Armstrong McKay, David; Abrams, Jesse; Winkelmann, Ricarda; Sakschewski, Boris; Loriani, Sina; Fetzer, Ingo; Cornell, Sarah; Rockström, Johan et al. (9 September 2022). “Exceeding 1.5°C global warming could trigger multiple climate tipping points” (英語). Science 377 (6611): eabn7950. doi:10.1126/science.abn7950. hdl:10871/131584. ISSN 0036-8075. PMID 36074831. https://www.science.org/doi/10.1126/science.abn7950. 
  39. ^ Armstrong McKay, David (2022年9月9日). “Exceeding 1.5°C global warming could trigger multiple climate tipping points – paper explainer” (英語). climatetippingpoints.info. 2022年10月2日閲覧。
  40. ^ Parmentier, Frans-Jan W.; Zhang, Wenxin; Mi, Yanjiao; Zhu, Xudong; van Huissteden, Jacobus; J. Hayes, Daniel; Zhuang, Qianlai; Christensen, Torben R. et al. (25 July 2015). “Rising methane emissions from northern wetlands associated with sea ice decline”. Geophysical Research Letters 42 (17): 7214–7222. Bibcode2015GeoRL..42.7214P. doi:10.1002/2015GL065013. PMC 5014133. PMID 27667870. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5014133/. 
  41. ^ Melting Arctic sea ice accelerates methane emissions”. ScienceDaily (2015年). 2019年6月8日時点のオリジナルよりアーカイブ。2018年3月9日閲覧。
  42. ^ 『Methane Hydrates in Quaternary Climate Change: The Clathrate Gun Hypothesis』John Wiley & Sons, Inc.、2003年1月1日。 
  43. ^ Shindell, Drew T.; Faluvegi, Greg; Koch, Dorothy M.; Schmidt, Gavin A.; Unger, Nadine; Bauer, Susanne E. (2009). “Improved attribution of climate forcing to emissions”. Science 326 (5953): 716–718. Bibcode2009Sci...326..716S. doi:10.1126/science.1174760. PMID 19900930. https://zenodo.org/record/1230902. 
  44. ^ Maslin, M; Owen, M; Betts, R; Day, S; Dunkley Jones, T; Ridgwell, A (2010-05-28). “Gas hydrates: past and future geohazard?” (英語). Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 368 (1919): 2369–2393. Bibcode2010RSPTA.368.2369M. doi:10.1098/rsta.2010.0065. ISSN 1364-503X. PMID 20403833. 
  45. ^ Archer, David; Buffett, Bruce (2005). “Time-dependent response of the global ocean clathrate reservoir to climatic and anthropogenic forcing”. Geochemistry, Geophysics, Geosystems 6 (3): 1–13. Bibcode2005GGG.....603002A. doi:10.1029/2004GC000854. オリジナルの2009-07-09時点におけるアーカイブ。. https://web.archive.org/web/20090709152333/http://geosci.uchicago.edu/~archer/reprints/archer.2005.clathrates.pdf 2009年5月15日閲覧。. 
  46. ^ Schellnhuber, Hans Joachim; Winkelmann, Ricarda; Scheffer, Marten; Lade, Steven J.; Fetzer, Ingo; Donges, Jonathan F.; Crucifix, Michel; Cornell, Sarah E. et al. (2018). “Trajectories of the Earth System in the Anthropocene”. Proceedings of the National Academy of Sciences 115 (33): 8252–8259. Bibcode2018PNAS..115.8252S. doi:10.1073/pnas.1810141115. ISSN 0027-8424. PMC 6099852. PMID 30082409. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6099852/. 
  47. ^ Archer, D. (2007). “Methane hydrate stability and anthropogenic climate change”. Biogeosciences 4 (4): 521–544. Bibcode2007BGeo....4..521A. doi:10.5194/bg-4-521-2007. http://geosci.uchicago.edu/~archer/reprints/archer.2007.hydrate_rev.pdf.  See also blog summary Archived 2007-04-15 at the Wayback Machine..
  48. ^ Archer, D.; Buffett, B. (2005). “Time-dependent response of the global ocean clathrate reservoir to climatic and anthropogenic forcing”. Geochemistry, Geophysics, Geosystems 6 (3): Q03002. Bibcode2005GGG.....603002A. doi:10.1029/2004GC000854. http://geosci.uchicago.edu/~archer/reprints/archer.2005.clathrates.pdf. 
  49. ^ Fox-Kemper, B.; Hewitt, H.T.; Xiao, C.; Aðalgeirsdóttir, G.; Drijfhout, S.S.; Edwards, T.L.; Golledge, N.R.; Hemer, M. et al. (2021). Masson-Delmotte, V.; Zhai, P.; Pirani, A. et al.. eds. “Chapter 5: Global Carbon and other Biogeochemical Cycles and Feedbacks”. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, Cambridge, UK and New York, NY, USA): 5. doi:10.1017/9781009157896.011. https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Full_Report.pdf. 
  50. ^ Corbyn, Zoë (December 7, 2012). “Locked greenhouse gas in Arctic sea may be 'climate canary'”. Nature. doi:10.1038/nature.2012.11988. http://www.nature.com/news/locked-greenhouse-gas-in-arctic-sea-may-be-climate-canary-1.11988 2014年4月12日閲覧。. 
  51. ^ Shakhova, N.; Semiletov, I.; Panteleev, G. (2005). “The distribution of methane on the Siberian Arctic shelves: Implications for the marine methane cycle”. Geophysical Research Letters 32 (9): L09601. Bibcode2005GeoRL..32.9601S. doi:10.1029/2005GL022751. 
  52. ^ Arctic methane outgassing on the E Siberian Shelf part 1 - the background”. SkepticalScience (2012年). 2023年12月29日閲覧。
  53. ^ Climate-Hydrate Interactions”. USGS (2013年1月14日). 2023年12月29日閲覧。
  54. ^ Methane release from the East Siberian Arctic Shelf and the Potential for Abrupt Climate Change” (2010年11月30日). 2014年4月12日閲覧。
  55. ^ a b "Methane bubbling through seafloor creates undersea hills" (Press release). Monterey Bay Aquarium Research Institute. 5 February 2007. 2008年10月11日時点のオリジナルよりアーカイブ。
  56. ^ Shakhova, N.; Semiletov, I.; Salyuk, A.; Kosmach, D. (2008). “Anomalies of methane in the atmosphere over the East Siberian shelf: Is there any sign of methane leakage from shallow shelf hydrates?”. Geophysical Research Abstracts 10: 01526. オリジナルの2012-12-22時点におけるアーカイブ。. https://web.archive.org/web/20121222144303/http://www.cosis.net/abstracts/EGU2008/01526/EGU2008-A-01526.pdf 2008年9月25日閲覧。. 
  57. ^ Mrasek, Volker (2008年4月17日). “A Storehouse of Greenhouse Gases Is Opening in Siberia”. Spiegel International Online. http://www.spiegel.de/international/world/0,1518,547976,00.html. "The Russian scientists have estimated what might happen when this Siberian permafrost-seal thaws completely and all the stored gas escapes. They believe the methane content of the planet's atmosphere would increase twelvefold." 
  58. ^ Sergienko, V. I. (September 2012). “The Degradation of Submarine Permafrost and the Destruction of Hydrates on the Shelf of East Arctic Seas as a Potential Cause of the 'Methane Catastrophe': Some Results of Integrated Studies in 2011” (PDF). Doklady Earth Sciences 446 (1): 1132–1137. Bibcode2012DokES.446.1132S. doi:10.1134/S1028334X12080144. ISSN 1028-334X. https://www.researchgate.net/publication/257850226. 
  59. ^ Shakhova, N.; Semiletov, I.; Salyuk, A.; Kosmach, D.; Bel'cheva, N. (2007). “Methane release on the Arctic East Siberian shelf”. Geophysical Research Abstracts 9: 01071. http://www.cosis.net/abstracts/EGU2007/01071/EGU2007-J-01071.pdf?PHPSESSID=e. 
  60. ^ Connor, Steve (2008年9月23日). “Exclusive: The methane time bomb”. The Independent. 2008年10月3日閲覧。
  61. ^ Connor, Steve (2008年9月25日). “Hundreds of methane 'plumes' discovered”. The Independent. 2008年10月3日閲覧。
  62. ^ Shakhova, Natalia; Semiletov, Igor; Leifer, Ira; Sergienko, Valentin; Salyuk, Anatoly; Kosmach, Denis; Chernykh, Denis; Stubbs, Chris et al. (24 November 2013). “Ebullition and storm-induced methane release from the East Siberian Arctic Shelf”. Nature 7 (1): 64–70. Bibcode2014NatGe...7...64S. doi:10.1038/ngeo2007. https://www.nature.com/articles/ngeo2007. 
  63. ^ Thornton, Brett F.; Prytherch, John; Andersson, Kristian; Brooks, Ian M.; Salisbury, Dominic; Tjernström, Michael; Crill, Patrick M. (29 January 2020). “Shipborne eddy covariance observations of methane fluxes constrain Arctic sea emissions”. Science Advances 6 (5): eaay7934. Bibcode2020SciA....6.7934T. doi:10.1126/sciadv.aay7934. PMC 6989137. PMID 32064354. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6989137/. 
  64. ^ “Like 'champagne bottles being opened': Scientists document an ancient Arctic methane explosion”. The Washington Post. (2017年6月1日). https://www.washingtonpost.com/news/energy-environment/wp/2017/06/01/like-champagne-bottles-being-opened-scientists-document-an-ancient-arctic-methane-explosion 
  65. ^ Froitzheim, Nikolaus; Majka, Jaroslaw; Zastrozhnov, Dmitry (2021-08-10). “Methane release from carbonate rock formations in the Siberian permafrost area during and after the 2020 heat wave” (英語). Proceedings of the National Academy of Sciences 118 (32). doi:10.1073/pnas.2107632118. ISSN 0027-8424. PMC PMC8364203. PMID 34341110. https://pnas.org/doi/full/10.1073/pnas.2107632118. 
  66. ^ Mufson, Steven (2021年8月3日). “Scientists expected thawing wetlands in Siberia’s permafrost. What they found is ‘much more dangerous.’” (英語). Washington Post. ISSN 0190-8286. https://www.washingtonpost.com/climate-environment/2021/08/02/climate-change-heat-wave-unleashes-methane-from-prehistoric-siberian-rock/ 2024年1月2日閲覧。 
  67. ^ Rößger, Norman; Sachs, Torsten; Wille, Christian; Boike, Julia; Kutzbach, Lars (2022-11). “Seasonal increase of methane emissions linked to warming in Siberian tundra” (英語). Nature Climate Change 12 (11): 1031–1036. doi:10.1038/s41558-022-01512-4. ISSN 1758-6798. https://www.nature.com/articles/s41558-022-01512-4. 
  68. ^ Sun, Tianyi; Ocko, Ilissa B; Hamburg, Steven P (2022-03-15). “The value of early methane mitigation in preserving Arctic summer sea ice” (英語). Environmental Research Letters 17 (4): 044001. Bibcode2022ERL....17d4001S. doi:10.1088/1748-9326/ac4f10. ISSN 1748-9326. 
  69. ^ Stolaroff, Joshuah K.; Bhattacharyya, Subarna; Smith, Clara A.; Bourcier, William L.; Cameron-Smith, Philip J.; Aines, Roger D. (2012-06-19). “Review of Methane Mitigation Technologies with Application to Rapid Release of Methane from the Arctic” (英語). Environmental Science & Technology 46 (12): 6455–6469. Bibcode2012EnST...46.6455S. doi:10.1021/es204686w. ISSN 0013-936X. OSTI 1773262. PMID 22594483. https://pubs.acs.org/doi/10.1021/es204686w. 
  70. ^ Frost Methane Labs: Design of Smart Micro-Flare Fleet to Mitigate Distributed Methane Emissions”. ARPA-E. 2022年7月24日閲覧。
  71. ^ Herman, Ari (2019年8月26日). “A Startup to Save All Startups: Mitigating Arctic Methane Release” (英語). The LegoBox Travelogue. 2022年7月24日閲覧。
  72. ^ Home” (英語). Frost Methane Labs (2021年). 2022年7月24日閲覧。


「北極圏メタンガス放散」の続きの解説一覧



英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  
  •  北極圏メタンガス放散のページへのリンク

辞書ショートカット

すべての辞書の索引

「北極圏メタンガス放散」の関連用語

北極圏メタンガス放散のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



北極圏メタンガス放散のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの北極圏メタンガス放散 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS