円の面積
円の面積(えんのめんせき) 古代エジプトにおいては、リンド・パピルスの問題50に円の面積を求める方法が記録されている[注釈 1]。
リンド・パピルスでは、円の直径 エウクレイデスは『原論』において、直径 『九章算術』に註釈をつけた魏の劉徽は、円の内接する正6角形から正12角形、正24角形と辺数を増やしていくと、やがて内接多角形の面積は円の面積に差は無くなる、としている[17]。
具体的には、円に内接する正n多角形のうち1つの三角形(△OAB)に対し、三角形の底辺とそのの二等分線と円周上の交点を高さとする長方形で囲まれる面積(□AA'B'B)を考えると、内接する正n角形の面積とその面積に長方形の面積を加えたものの間に円の面積がある、ということを利用している(右図)。
正n角形の面積を 半径rの円に内接する正n角形において、1区画の三角形の面積を考える(右図(a))。
三角形の高さは 原点を中心として、半径
- Area of a circleのページへのリンク