木分解とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 木分解の意味・解説 

木分解

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/06/28 01:24 UTC 版)

ナビゲーションに移動 検索に移動
8点のグラフとそのサイズ6の木分解。グラフの各辺に対して、それがつなぐ2点は木のあるノードに同時に含まれている。グラフの各頂点について、それが含まれているノードは木の連結な部分木をなす。木の各ノードは高々3点しか含まないので、この木分解の木幅は2である。

グラフ理論において、木分解とはグラフからへのマッピングであり、木幅英語版を定義してグラフの上のある種の計算機科学の問題を高速に解くために使われる。

機械学習では、木分解はjunction treeclique treejoin treeとも呼ばれ、確率伝搬法制約充足問題クエリ最適化en:matrix decompositionのような問題で重要な役割を果たす。

木分解の概念は最初にRudolf Halin (1976)により導入された。後にNeil Robertson and Paul Seymour (1984)により再発見され、以降他の多数の研究者たちに研究されている。[1]

定義

直観的には、木分解は与えられたグラフGの頂点をある一つの木の部分木として表現する。元のグラフGにおいて2つの頂点が隣接するのは対応する部分木が共通部分を持つときに限る。それゆえ、Gは部分木達の交差グラフの部分グラフをなす。交差グラフそのものは弦グラフである。

それぞれの部分木はグラフの頂点に木のノードの集合を割り当てる。このことを形式的に定義すると、木のノードひとつひとつを、それに関連付けられたグラフの頂点の集合として表現する。そのため、グラフG = (V, E)が与えられたとき、木分解はペア(X, T)である。ここで、X = {X1, ..., Xn} はVの部分集合族で、Tは頂点がVの部分集合Xiであるような木であり、以下の性質を満たす:[2]

  1. 全ての集合Xiの和集合はVに等しい。つまり、それぞれの頂点は少なくとも一つの木のノードに割り当てられている。
  2. グラフの各辺(v, w) に対して、vwの両方を含む部分集合 Xi が少なくとも一つ存在する。つまり、グラフの中で頂点が隣接するのは対応する部分木が共通のノードを持つ場合に限られる。
  3. XiXj が両方とも頂点vを含む場合、XiXj の間の(一意な)パスに含まれる全てのノードXkvを含む。つまり、vに関連付けられたノードたちはTの連結な部分集合をなす。これはcoherenceやrunning intersection propertyとしても知られている。これは、「 この項目は、組合せ数学に関連した書きかけの項目です。この項目を加筆・訂正などしてくださる協力者を求めています



英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「木分解」の関連用語

木分解のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



木分解のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの木分解 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS