ゴモリ・フー木とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > ゴモリ・フー木の意味・解説 

ゴモリ・フー木

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2016/12/15 00:22 UTC 版)

ゴモリ・フー木 (ゴモリ・フーぎ、英: Gomory-Hu tree) は、グラフ理論におけるカット構造の表現のひとつである。

同一の頂点集合 V を持つ 2 個の重み付き無向グラフ G と H が与えられたとき、V に属する任意の 2 点 u と v に対して、 H における u, v 間の局所辺連結度と G における u, v 間の局所辺連結度が等しいとき、 H は G にフロー同等とよばれる。

G にフロー同等な木 T において、 T から辺 e を除去して分かれる連結成分を A と B とする。 T の任意の辺 e に対して、 A のカットの重みと B のカットの重みが等しいとき、 T はゴモリ・フー木とよばれる。

参考文献

  • 茨木, 永持 and 石井, グラフ理論―連結構造とその応用―, 朝倉書店, (2010)

関連項目




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「ゴモリ・フー木」の関連用語

ゴモリ・フー木のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



ゴモリ・フー木のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのゴモリ・フー木 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS