染色体外DNAとは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 染色体外DNAの意味・解説 

染色体外DNA

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/01/21 13:27 UTC 版)

染色体外DNA(せんしょくたいがいDNA、: extrachromosomal DNA)は、染色体から離れて細胞核の内部または外部に存在するDNAを指す。各個体のゲノムの大部分のDNAは核内の染色体に存在している一方で、細胞内には複数の形態の染色体外DNAも存在する。これらの一部は重要な生物学的機能を果たしており[1]、またがんなどの疾患に関与している場合もある[2][3][4]


  1. ^ a b c “Extrachromosomal DNA in eucaryotes”. Plasmid 14 (3): 177–91. (November 1985). doi:10.1016/0147-619X(85)90001-0. PMID 3912782. 
  2. ^ a b c “Extrachromosomal oncogene amplification in tumour pathogenesis and evolution”. Nature Reviews. Cancer 19 (5): 283–288. (May 2019). doi:10.1038/s41568-019-0128-6. PMC 7168519. PMID 30872802. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7168519/. 
  3. ^ a b c d e f “Extrachromosomal oncogene amplification drives tumour evolution and genetic heterogeneity”. Nature 543 (7643): 122–125. (March 2017). Bibcode2017Natur.543..122T. doi:10.1038/nature21356. PMC 5334176. PMID 28178237. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5334176/. 
  4. ^ a b c Cancer May Be Driven by DNA Outside of Chromosomes” (英語). The Scientist Magazine®. 2021年10月5日閲覧。
  5. ^ a b “Formation of non-random extrachromosomal elements during development, differentiation and oncogenesis”. Seminars in Cancer Biology 17 (1): 56–64. (February 2007). doi:10.1016/j.semcancer.2006.10.007. PMID 17116402. 
  6. ^ Alberts, Bruce; Bray, Dennis; Hopkin, Karen; Johnson, Alexander; Lewis, Julian; Raff, Martin; Roberts, Keith; Walter, Peter (2014). Essential Cell Biology (Fourth ed.). New York, New York, USA: Garland Science. p. 449. ISBN 978-0-8153-4454-4 
  7. ^ a b “Targeted therapy resistance mediated by dynamic regulation of extrachromosomal mutant EGFR DNA”. Science 343 (6166): 72–6. (January 2014). Bibcode2014Sci...343...72N. doi:10.1126/science.1241328. PMC 4049335. PMID 24310612. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4049335/. 
  8. ^ a b “Discordant inheritance of chromosomal and extrachromosomal DNA elements contributes to dynamic disease evolution in glioblastoma”. Nature Genetics 50 (5): 708–717. (May 2018). doi:10.1038/s41588-018-0105-0. PMC 5934307. PMID 29686388. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5934307/. 
  9. ^ a b Nelson, David (2008). Lehninger Principles of Biochemistry. New York: W. H. Freeman and Company. pp. 307–308. ISBN 978-0-7167-7108-1. https://archive.org/details/lehningerprincip00lehn_1/page/307 
  10. ^ Watson, James (2007). Recombinant RNA: Genes and Genomes- A Short Course. New York: W. H. Freeman and Company. p. 81. ISBN 978-0-7167-2866-5 
  11. ^ “Extrachromosomal genetic elements in Micrococcus”. Applied Microbiology and Biotechnology 97 (1): 63–75. (January 2013). doi:10.1007/s00253-012-4539-5. PMID 23138713. 
  12. ^ Barnum, Susan (2005). Biotechnology- An Introduction. California: Brooks / Cole. pp. 62–63. ISBN 978-0-495-11205-1 
  13. ^ “From plasmids to protection: a review of DNA vaccines against infectious diseases”. International Reviews of Immunology 25 (3–4): 99–123. (2006). doi:10.1080/08830180600785827. PMID 16818367. 
  14. ^ “Mitigating the looming vaccine crisis: production and delivery of plasmid-based vaccines”. Critical Reviews in Biotechnology 31 (1): 32–52. (March 2011). doi:10.3109/07388551.2010.483460. PMID 20879832. http://eprints.ums.edu.my/20570/1/Mitigating%20the%20Looming%20Vaccine%20crisis.pdf. 
  15. ^ a b “Linear plasmids and chromosomes in bacteria”. Molecular Microbiology 10 (5): 917–22. (December 1993). doi:10.1111/j.1365-2958.1993.tb00963.x. PMID 7934868. https://zenodo.org/record/1230611. 
  16. ^ “Microbial linear plasmids”. Applied Microbiology and Biotechnology 47 (4): 329–36. (April 1997). doi:10.1007/s002530050936. PMID 9163946. 
  17. ^ Dance, Amber (16 July 2021). “Massive DNA 'Borg' structures perplex scientists” (英語). Nature 595 (7869): 636. Bibcode2021Natur.595..636D. doi:10.1038/d41586-021-01947-3. 
  18. ^ Andrew, Shakespeare, William Gurr (2021年7月30日). “Previously undiscovered DNA 'borgs' found on California wetlands” (英語). The Independent. https://www.independent.co.uk/climate-change/news/dna-wetlands-borgs-california-b1893312.html 2021年8月13日閲覧。 
  19. ^ Al-Shayeb, Basem; Schoelmerich, Marie C.; West-Roberts, Jacob; Valentin-Alvarado, Luis E.; Sachdeva, Rohan; Mullen, Susan; Crits-Christoph, Alexander; Wilkins, Michael J. et al. (10 July 2021). “Borgs are giant extrachromosomal elements with the potential to augment methane oxidation” (英語). bioRxiv: 2021.07.10.451761. doi:10.1101/2021.07.10.451761. https://www.biorxiv.org/content/10.1101/2021.07.10.451761v1.full 2021年8月13日閲覧。. 
  20. ^ a b c Lodish, Harvey (2013). Molecular Cell Biology, 7th edition. New York: W.H. Freeman and Company. pp. 245–251. ISBN 978-1-4641-2398-6 
  21. ^ a b c “Mitochondrial DNA and disease”. Lancet 354 Suppl 1 (9176): SI17-21. (July 1999). doi:10.1016/S0140-6736(99)90244-1. PMID 10437851. 
  22. ^ a b c “Quantitative evaluation of the mitochondrial DNA depletion syndrome”. Clinical Chemistry 56 (7): 1119–27. (July 2010). doi:10.1373/clinchem.2009.141549. PMID 20448188. 
  23. ^ “Mitochondrial DNA repair pathways”. Journal of Bioenergetics and Biomembranes 31 (4): 391–8. (August 1999). doi:10.1023/A:1005484004167. PMID 10665528. 
  24. ^ “Mitochondrial DNA, chloroplast DNA and the origins of development in eukaryotic organisms”. Biology Direct 5 (42): 42. (June 2010). doi:10.1186/1745-6150-5-42. PMC 2907347. PMID 20587059. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2907347/. 
  25. ^ NCBI Taxonomy Homepage”. www.ncbi.nlm.nih.gov. 2024年1月16日閲覧。
  26. ^ “Genetic aspects of mitochondrial genome evolution”. Molecular Phylogenetics and Evolution 69 (2): 328–38. (November 2013). doi:10.1016/j.ympev.2012.10.020. PMID 23142697. 
  27. ^ “Rates and patterns of chloroplast DNA evolution”. Proceedings of the National Academy of Sciences of the United States of America 91 (15): 6795–801. (July 1994). Bibcode1994PNAS...91.6795C. doi:10.1073/pnas.91.15.6795. PMC 44285. PMID 8041699. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC44285/. 
  28. ^ “Cytogenomic analyses reveal the structural plasticity of the chloroplast genome in higher plants”. The Plant Cell 13 (2): 245–54. (February 2001). doi:10.1105/tpc.13.2.245. PMC 102240. PMID 11226183. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC102240/. 
  29. ^ Aronsson, Henrik; Sandelius, Anna Stina (2009). The chloroplast interactions with the environment ([Online-Ausg.]. ed.). Berlin: Springer. p. 18. ISBN 978-3540686965 
  30. ^ “Circular chloroplast chromosomes: the grand illusion”. The Plant Cell 16 (7): 1661–6. (July 2004). doi:10.1105/tpc.160771. PMC 514151. PMID 15235123. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC514151/. 
  31. ^ “Motif analysis unveils the possible co-regulation of chloroplast genes and nuclear genes encoding chloroplast proteins”. Plant Molecular Biology 80 (2): 177–87. (September 2012). doi:10.1007/s11103-012-9938-6. PMID 22733202. 
  32. ^ “Essential nucleoid proteins in early chloroplast development”. Trends in Plant Science 18 (4): 186–94. (April 2013). doi:10.1016/j.tplants.2012.11.003. PMID 23246438. 
  33. ^ “The loss of DNA from chloroplasts as leaves mature: fact or artefact?”. Journal of Experimental Botany 60 (11): 3005–10. (2009). doi:10.1093/jxb/erp158. PMID 19454766. 
  34. ^ a b “Extrachromosomal circular DNA derived from tandemly repeated genomic sequences in plants”. The Plant Journal 53 (6): 1027–34. (March 2008). doi:10.1111/j.1365-313X.2007.03394.x. PMID 18088310. 
  35. ^ a b “Survey of extrachromosomal circular DNA derived from plant satellite repeats”. BMC Plant Biology 8: 90. (August 2008). doi:10.1186/1471-2229-8-90. PMC 2543021. PMID 18721471. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2543021/. 
  36. ^ “Replication independent formation of extrachromosomal circular DNA in mammalian cell-free system”. PLOS ONE 4 (7): e6126. (July 2009). Bibcode2009PLoSO...4.6126C. doi:10.1371/journal.pone.0006126. PMC 2699479. PMID 19568438. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2699479/. 
  37. ^ “Extrachromosomal circles of satellite repeats and 5S ribosomal DNA in human cells”. Mobile DNA 1 (1): 11. (March 2010). doi:10.1186/1759-8753-1-11. PMC 3225859. PMID 20226008. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3225859/. 
  38. ^ The curious DNA circles that make treating cancer so hard”. cen.acs.org. 2021年10月2日閲覧。
  39. ^ “Viral mutation rates”. Journal of Virology 84 (19): 9733–48. (October 2010). doi:10.1128/JVI.00694-10. PMC 2937809. PMID 20660197. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2937809/. 
  40. ^ Silverthorn, Dee Unglaub (2007). Human physiology: an integrated approach (4th ed., [Pearson international edition] ed.). San Francisco: Pearson/Benjamin Cummings. ISBN 978-0-321-39624-2 
  41. ^ “Inactivation of p53 rescues the maintenance of high risk HPV DNA genomes deficient in expression of E6”. PLOS Pathogens 9 (10): e1003717. (October 2013). doi:10.1371/journal.ppat.1003717. PMC 3812038. PMID 24204267. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3812038/. 
  42. ^ “Cytoplasmic DNA innate immune pathways”. Immunological Reviews 243 (1): 99–108. (September 2011). doi:10.1111/j.1600-065X.2011.01051.x. PMID 21884170. 
  43. ^ a b “Innate immune DNA sensing pathways: STING, AIMII and the regulation of interferon production and inflammatory responses”. Current Opinion in Immunology 23 (1): 10–20. (February 2011). doi:10.1016/j.coi.2010.12.015. PMC 3881186. PMID 21239155. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3881186/. 
  44. ^ An Introduction to Genetic Analysis. New York: W.H.Freeman. (2000). https://www.ncbi.nlm.nih.gov/books/NBK22059/ 
  45. ^ a b “Maternal inheritance of mitochondrial DNA by diverse mechanisms to eliminate paternal mitochondrial DNA”. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1833 (8): 1979–84. (August 2013). doi:10.1016/j.bbamcr.2013.03.010. PMID 23524114. 
  46. ^ “Mitochondrial DNA copy number is associated with breast cancer risk”. PLOS ONE 8 (6): e65968. (June 2013). Bibcode2013PLoSO...865968T. doi:10.1371/journal.pone.0065968. PMC 3680391. PMID 23776581. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3680391/. 
  47. ^ “Extrachromosomal DNA in the Apicomplexa”. Microbiology and Molecular Biology Reviews 61 (1): 1–16. (March 1997). doi:10.1128/mmbr.61.1.1-16.1997. PMC 232597. PMID 9106361. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC232597/. 
  48. ^ Mukherjee, Avinaba; Sadhukhan, Gobinda Chandra (2016-03). “Anti-malarial Drug Design by Targeting Apicoplasts: New Perspectives”. Journal of Pharmacopuncture 19 (1): 7–15. doi:10.3831/KPI.2016.19.001. ISSN 2093-6966. PMC 4887746. PMID 27280044. https://pubmed.ncbi.nlm.nih.gov/27280044. 
  49. ^ “Extrachromosomal DNA is associated with oncogene amplification and poor outcome across multiple cancers”. Nature Genetics 52 (8): 891–897. (August 2020). doi:10.1038/s41588-020-0678-2. PMC 7484012. PMID 32807987. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7484012/. 
  50. ^ “Gene amplification as double minutes or homogeneously staining regions in solid tumors: origin and structure”. Genome Research 20 (9): 1198–206. (September 2010). doi:10.1101/gr.106252.110. PMC 2928498. PMID 20631050. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2928498/. 
  51. ^ “Elimination of extrachromosomally amplified MYC genes from human tumor cells reduces their tumorigenicity”. Proceedings of the National Academy of Sciences of the United States of America 89 (17): 8165–9. (September 1992). Bibcode1992PNAS...89.8165V. doi:10.1073/pnas.89.17.8165. PMC 49877. PMID 1518843. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC49877/. 
  52. ^ “Structure and evolution of double minutes in diagnosis and relapse brain tumors”. Acta Neuropathologica 137 (1): 123–137. (January 2019). doi:10.1007/s00401-018-1912-1. PMC 6338707. PMID 30267146. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6338707/. 
  53. ^ McKie, Robin; Rose, J. C.; Chen, C. Y.; Pichugin, Y.; Xie, L.; Tang, J.; Hung, K. L.; Yost, K. E. et al. (February 18, 2023). 'Bond villain' DNA could transform cancer treatment, scientists say. 54. pp. 1527–1533. doi:10.1038/s41588-022-01177-x. PMC 9534767. PMID 36123406. https://www.theguardian.com/science/2023/feb/18/bond-villain-dna-could-transform-cancer-treatment-scientists-say. 
  54. ^ “Circular ecDNA promotes accessible chromatin and high oncogene expression”. Nature 575 (7784): 699–703. (November 2019). Bibcode2019Natur.575..699W. doi:10.1038/s41586-019-1763-5. PMC 7094777. PMID 31748743. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7094777/. 
  55. ^ Hung, King L.; Yost, Kathryn E.; Xie, Liangqi; Shi, Quanming; Helmsauer, Konstantin; Luebeck, Jens; Schöpflin, Robert; Lange, Joshua T. et al. (December 2021). “ecDNA hubs drive cooperative intermolecular oncogene expression” (英語). Nature 600 (7890): 731–736. Bibcode2021Natur.600..731H. doi:10.1038/s41586-021-04116-8. ISSN 1476-4687. PMC 9126690. PMID 34819668. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9126690/. 


「染色体外DNA」の続きの解説一覧



英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  
  •  染色体外DNAのページへのリンク

辞書ショートカット

すべての辞書の索引

「染色体外DNA」の関連用語

染色体外DNAのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



染色体外DNAのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの染色体外DNA (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS