''j''-不変量とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > ''j''-不変量の意味・解説 

j-不変量

(''j''-不変量 から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/02/26 02:30 UTC 版)

複素平面内のクラインの j-不変量

数学では複素変数 τ の函数であるフェリックス・クラインj-不変量 (j-invariant)(もしくはj-函数)とは、複素数の上半平面上に定義された SL(2, Z) のウェイト 0 のモジュラー函数である。j-不変量として、尖点で一位の極を持つ以外は正則な関数であり、次を満たすものが一意に定まる。

上半平面上に作用するモジュラ群の基本領域

2つの変換 τ → τ + 1 と τ → -τ−1モジュラ群と呼ばれるを生成し、この群は射影特殊線型群 PSL(2, Z) と同一視できる。この群に属する適当な変換

を選択することにより、τ を j の基本領域英語版(fundamental region)内にあり j に対して同じ値をとる、ある値に帰着させることができる。基本領域は次の条件を満たす τ から構成されている。

函数 j (τ) をこの領域へ制限すると、複素数 C のすべての値をちょうど一度だけ取る。言い換えると、C すべての元 c に対し、c = j(τ) となる基本領域の元 τ が一意に存在する。このように、j は基本領域を全複素平面へ写像するという性質を持っている。

リーマン面として、基本領域の種数は 0 であり、すべての(レベル 1 の)モジュラー函数は j有理函数であり、逆に、j のすべての有理函数はモジュラー函数である。言い換えると、モジュラー函数全体のなす体は C(j) である。

類体論と j-不変量

j-不変量は、多くの注目すべき性質を有する。

  • τ が虚数乗法である、すなわち、虚数部が正である虚二次体の任意の元である(従って、j-不変量が定義される)ならば、j(τ) は代数的整数である[1]
  • 体の拡大 Q[j (τ), τ]/Q(τ) はアーベル的、すなわち、ガロア群がアーベル的になる。
  • Λ を {1, τ} で生成される C の中の格子とすると、乗法の下に Λ を固定する Q(τ) のすべての元が、整環英語版(order)と呼ばれる環の単位元(unit)を形成することが容易にわかる。同様に、同じ整環の生成子 {1, τ′} を持つ格子は、Q(τ) 上で j (τ) の代数的共役である j (τ') を定義する。包含関係に従い、Q(τ) の唯一の最大整環は、Q(τ) の代数的整数の環であり、その環を持つ τ の値は、Q(τ) の不分岐拡大を導く。

これらの古典的な結果は、虚数乗法論の出発点となっている。

超越的性質

1937年、テオドール・シュナイダー英語版(Theodor Schneider)は、前述の τ が上半平面で二次の無理数であれば j(τ) は代数的数であるということを証明した。加えて、 τ が代数的数だが虚二次体の数でないならば、j(τ) は超越数であることをも証明した。

j-函数は数多くの超越的性質を持つ。クルト・マーラー英語版(Kurt Mahler)はマーラー予想とも呼ばれる特別な超越性を予想し、1990年代にユーリ・ネステレンコ(Yu. V. Nesternko)とパトリス・フィリポン(Patrice Phillipon)の結果の系として証明された。マーラー予想とは、τ が上半平面にあればexp(2πiτ) と j(τ) は双方が同時に代数的にはならないであろうという予想である。現在はより強い結果が知られていて、例えば、exp(2πiτ) が代数的であれば次の 3つの数は代数的に独立で、超越数になる。

q-展開とムーンシャイン

j の注目すべき性質のいくつかは、q = exp(2πiτ) でのローラン級数として書かれるq-展開フーリエ級数展開)に関連している。q-展開は、

で始まっている。

なお、 j は尖点で一位の単純極を持つので、q-展開には q−1 未満の項がない。

このフーリエ係数はすべて整数であり、このことがいくつかの概整数、例えば有名なラマヌジャン定数英語版(Ramanujan's constant)の理由となる。

qn の係数の漸近公式英語版(asymptotic formula)は、ハーディ・リトルウッドの円周法英語版(Hardy–Littlewood circle method)で示すことができたように、

,

により与えられる。[2][3]

ムーンシャイン

さらに注目すべきは、q の正のべき乗の項のフーリエ係数がムーンシャイン加群英語版(moonshine module)と呼ばれるモンスター群の無限次元次数付き代数表現の次数部の次元であることである。特に、qn の係数は、ムーシャイン加群の次数 n の次元となっている。第一の例はグライス代数英語版(Griess algebra)であり、この代数は次元 196,884 で、項196884q に対応している。この驚くべき観察がムーンシャイン理論の出発点であった。

ムーンシャイン予想の研究は、ジョン・ホートン・コンウェイシモン・ノートン英語版(Simon P. Norton)により種数 0 のモジュラ函数を見つけることに発展した。ジョン・G・トンプソンは、

という形式に正規化される種数 0 のモジュラ函数が、有限個しか存在しないことを証明した。

別の表現

λ をモジュララムダ函数英語版(modular lambda function)とし、x = λ(1−λ) と置くと

を得る。

は、ヤコビのテータ函数 の比率であり、楕円モジュラス の二乗である。[4] λ が次の非調和比(cross-ratio)の 6つの値で入れ替わるときは、j の値は不変である[5]

j の分岐点は {0, 1, ∞} であるので、ベリイ函数英語版(Belyi function)である[6]

テータ函数による表現

ノーム)と定義し直すと、ヤコビのテータ函数

から指標付きテータ函数を導くことができる。次のように置くこととする。

ここに は記法を変えたものとした。すると、ヴァイエルシュトラス定数 g2, g3デデキントのエータ函数 η(τ) に対して、

となる。このようにすると、j (τ) を早く計算できる形に書き換えることができる。

ただし、

であることに注意する。

代数的定義

今までは、j を複素変数の函数として考えてきたが、楕円曲線の同型類の不変量としては、j を純粋に代数的に定義することもできる。

を任意の体の上の平面楕円曲線とすると、

と定義することができ、

と表すと、これは楕円曲線の判別式を表している。

ここで、楕円曲線の j-不変量を

と定義する。

楕円曲線が定義されている体の標数が 2 もしくは 3 でない場合に、この定義は

と書き直すことができる。

逆函数

j-不変量の逆函数は、超幾何函数 2F1 で表すこともできる(ピカール・フックス方程式英語版(Picard–Fuchs equation)も参照)。与えられた数値 N に対して 式 j(τ) = N を τ について解くためには、少なくとも 4つの方法が知られている。

方法 1: モジュララムダ函数英語版(modular lambda function) λ の6次式を解く方法。

x = λ(1−λ) とすると 6次式は x の 3次式となる。すると、λ の 6つの値のどれに対しても、

となる。

方法 2: γ の 4次式を解く方法。

任意の 4つのに対して、

となる。

方法 3: β の 3次式を解く方法。

すると、任意の 3つの根に対し、

となる。

方法 4: α の 2次式を解く方法。

すると、

となる。

2つの根は τ と -1/τ であるが、j (τ) = j (-1/τ) であるために、どの α を選んでも差異はない。後半 3つの方法は、ラマヌジャンの交代基底についての楕円函数論で発見された。

逆函数は、これらの根の比率が有界でないにもかかわらず、楕円函数の周期の高精度な計算を通して、うまく適用することが可能である。また、関連する帰結として、2 のべきの大きさをもつ虚数軸上の点で j の値が二次の根となることを通して(逆関数を)表すことができる(このようにして、定規とコンパスによる作図が可能となる)。レベルが 2 のモジュラ函数は 3次式であるので、この結果は自明ではない。

π公式

チュダノフスキー兄弟英語版(Chudnovsky brothers)は、1987年に、

を発見し、 という事実を示すことに使用した。同様な公式は、ラマヌジャン・佐藤級数英語版(Ramanujan-Sato series)を参照。

ボーチャーズの積公式

次はリチャード・ボーチャーズによって発見された[7]

である(ここでc_nはj関数のq展開におけるq^nの係数).

特殊値

j-不変量は、基本領域英語版(fundamental domain)の「角」

では 0 となる。

以下に、いくつかの特殊値を示す(J = j/1728 を使って表示している)[疑問点]

2014年にはいくつかの特殊値が計算された[8]

これ以前に示したすべての値は実数である。複素共役のペアは、 に対し、参考文献のように値に沿って、上記のように対称的になっていると推察される。

4つの特殊値は、2つの複素共役のペアにより与えられる[9]

参考文献

  1. ^ Silverman, Joseph H. (1986). The Arithmetic of Elliptic Curves. Graduate Texts in Mathematics. 106. Springer-Verlag. p. 339. ISBN 0-387-96203-4. Zbl 0585.14026 
  2. ^ Petersson, Hans (1932). Über die Entwicklungskoeffizienten der automorphen Formen. 58. 169–215. doi:10.1007/BF02547776. MR1555346 
  3. ^ Rademacher, Hans (1938). The Fourier coefficients of the modular invariant j(τ). 60. The Johns Hopkins University Press. 501–512. doi:10.2307/2371313. JSTOR 2371313. MR1507331 
  4. ^ Chandrasekharan (1985) p.108
  5. ^ Chandrasekharan, K. (1985), Elliptic Functions, Grundlehren der mathematischen Wissenschaften, 281, Springer-Verlag, p. 110, ISBN 3-540-15295-4, Zbl 0575.33001 
  6. ^ Girondo, Ernesto; González-Diez, Gabino (2012), Introduction to compact Riemann surfaces and dessins d'enfants, London Mathematical Society Student Texts, 79, Cambridge: Cambridge University Press, p. 267, ISBN 978-0-521-74022-7, Zbl 1253.30001 
  7. ^ Borcherds, R.E. (1992). Monstrous moonshine and monstrous Lie superalgebras. 60. 405– 444. 
  8. ^ Adlaj, Semjon. “Multiplication and division on elliptic curves, torsion points and roots of modular equations”. 2014年10月17日閲覧。
  9. ^ Adlaj, Semjon (2014年). “Torsion points on elliptic curves and modular polynomial symmetries”. 2014年10月15日閲覧。



英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

''j''-不変量のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



''j''-不変量のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのj-不変量 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS