「代数学の基本定理」を解説文に含む見出し語の検索結果(61~70/192件中)
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfb...
スツルムの定理(スツルムのていり、英: Sturm's theorem)とは、実係数一変数多項式の任意に指定された実区間に含まれる(重複を含めない)実零点の個数を決定する方法である(扱える区間...
スツルムの定理(スツルムのていり、英: Sturm's theorem)とは、実係数一変数多項式の任意に指定された実区間に含まれる(重複を含めない)実零点の個数を決定する方法である(扱える区間...
ベズーの等式(ベズーのとうしき、英: Bézout's identity)は初等整数論における定理である。ベズーの補題(ベズーのほだい、英: Bézout's lemma)とも呼ばれる...
ベズーの等式(ベズーのとうしき、英: Bézout's identity)は初等整数論における定理である。ベズーの補題(ベズーのほだい、英: Bézout's lemma)とも呼ばれる...
ベズーの等式(ベズーのとうしき、英: Bézout's identity)は初等整数論における定理である。ベズーの補題(ベズーのほだい、英: Bézout's lemma)とも呼ばれる...
ベズーの等式(ベズーのとうしき、英: Bézout's identity)は初等整数論における定理である。ベズーの補題(ベズーのほだい、英: Bézout's lemma)とも呼ばれる...
ベズーの等式(ベズーのとうしき、英: Bézout's identity)は初等整数論における定理である。ベズーの補題(ベズーのほだい、英: Bézout's lemma)とも呼ばれる...
ベズーの等式(ベズーのとうしき、英: Bézout's identity)は初等整数論における定理である。ベズーの補題(ベズーのほだい、英: Bézout's lemma)とも呼ばれる...
ベズーの等式(ベズーのとうしき、英: Bézout's identity)は初等整数論における定理である。ベズーの補題(ベズーのほだい、英: Bézout's lemma)とも呼ばれる...