「斉次多項式_(代数幾何学)」を解説文に含む見出し語の検索結果(31~40/98件中)
数学、特に抽象代数学において、次数付き環(じすうつきかん、英: graded ring; 次数付けられた環)あるいは次数環とは R i R j ⊂ R i + j {\displayst...
数学、特に抽象代数学において、次数付き環(じすうつきかん、英: graded ring; 次数付けられた環)あるいは次数環とは R i R j ⊂ R i + j {\displayst...
数学、特に抽象代数学において、次数付き環(じすうつきかん、英: graded ring; 次数付けられた環)あるいは次数環とは R i R j ⊂ R i + j {\displayst...
数学、特に抽象代数学において、次数付き環(じすうつきかん、英: graded ring; 次数付けられた環)あるいは次数環とは R i R j ⊂ R i + j {\displayst...
数学、特に抽象代数学において、次数付き環(じすうつきかん、英: graded ring; 次数付けられた環)あるいは次数環とは R i R j ⊂ R i + j {\displayst...
代数幾何学において、与えられた次元 N の射影空間の部分多様体として与えられる代数多様体 V の斉次座標環(せいじざひょうかん、homogeneous coordinate ring)R は定義によっ...
代数幾何学において、与えられた次元 N の射影空間の部分多様体として与えられる代数多様体 V の斉次座標環(せいじざひょうかん、homogeneous coordinate ring)R は定義によっ...
代数幾何学において、与えられた次元 N の射影空間の部分多様体として与えられる代数多様体 V の斉次座標環(せいじざひょうかん、homogeneous coordinate ring)R は定義によっ...
代数幾何学において、与えられた次元 N の射影空間の部分多様体として与えられる代数多様体 V の斉次座標環(せいじざひょうかん、homogeneous coordinate ring)R は定義によっ...
ナビゲーションに移動検索に移動 2つの三次曲線は9つの点で交わるベズーの定理(ベズーのていり、Bézout's theorem)は、2つの平面代数曲線の交点の個数に関する、代数幾何学における定理である...