「複素幾何学」を解説文に含む見出し語の検索結果(21~30/116件中)
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/12/12 05:10 UTC 版)「ミラー対称性 (弦理論)」の記事における「ホモロジカルミラー対称性」の解説詳細は「ホモ...
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfb...
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfb...
微分幾何学において、複素多様体上のケーラー・アインシュタイン計量 (Kähler–Einstein metric) は、ケーラー計量かつアインシュタイン計量であるようなリーマン計量である。多様体がケー...
微分幾何学において、複素多様体上のケーラー・アインシュタイン計量 (Kähler–Einstein metric) は、ケーラー計量かつアインシュタイン計量であるようなリーマン計量である。多様体がケー...
ナビゲーションに移動検索に移動原文と比べた結果、この記事には多数(少なくとも 5 個以上)の誤訳があることが判明しています。情報の利用には注意してください。正確な表現に改訳できる方を求めています。数学...
ナビゲーションに移動検索に移動原文と比べた結果、この記事には多数(少なくとも 5 個以上)の誤訳があることが判明しています。情報の利用には注意してください。正確な表現に改訳できる方を求めています。数学...
中島 啓(なかじま ひらく、1962年11月30日 - )は、日本の数学者。カブリ数物連携宇宙研究機構教授[1]。京都大学数理解析研究所名誉教授[2]・特任教授[...
代数幾何学という数学の分野において、セール双対(セールそうつい、Serre duality)は、ジャン=ピエール・セールによって証明された、代数多様体の連接層のコホモロジーについての双対性である。基本...
代数幾何学という数学の分野において、セール双対(セールそうつい、Serre duality)は、ジャン=ピエール・セールによって証明された、代数多様体の連接層のコホモロジーについての双対性である。基本...