「関数による表現」を解説文に含む見出し語の検索結果(11~20/48件中)
ナビゲーションに移動検索に移動 0 でない確率をとる確率変数値が有限個の場合は、黒丸に縦棒で表す。 累積分布関数の例。上から順に、離散確率分布、連続確率分布、連続点と離散点があるとき。離散確率分布(り...
ナビゲーションに移動検索に移動 0 でない確率をとる確率変数値が有限個の場合は、黒丸に縦棒で表す。 累積分布関数の例。上から順に、離散確率分布、連続確率分布、連続点と離散点があるとき。離散確率分布(り...
カントールの対角線論法(カントールのたいかくせんろんぽう、英: Cantor's diagonal argument)は、数学における証明テクニック(背理法)の一つ。1891年にゲオルク・カン...
カントールの対角線論法(カントールのたいかくせんろんぽう、英: Cantor's diagonal argument)は、数学における証明テクニック(背理法)の一つ。1891年にゲオルク・カン...
カントールの対角線論法(カントールのたいかくせんろんぽう、英: Cantor's diagonal argument)は、数学における証明テクニック(背理法)の一つ。1891年にゲオルク・カン...
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/01/04 05:00 UTC 版)「曖昧さ回避 (経済学)」の記事における「エルズバーグのパラドックス」の解説ダニエル・エ...
単振動のアニメーション単振動(たんしんどう、Simple harmonic motion)とは、量の時間変化が三角関数の正弦関数または余弦関数で表される振動である。調和振動(ちょうわしんどう)や、単調...
単振動のアニメーション単振動(たんしんどう、Simple harmonic motion)とは、量の時間変化が三角関数の正弦関数または余弦関数で表される振動である。調和振動(ちょうわしんどう)や、単調...
単振動のアニメーション単振動(たんしんどう、Simple harmonic motion)とは、量の時間変化が三角関数の正弦関数または余弦関数で表される振動である。調和振動(ちょうわしんどう)や、単調...
単振動のアニメーション単振動(たんしんどう、Simple harmonic motion)とは、量の時間変化が三角関数の正弦関数または余弦関数で表される振動である。調和振動(ちょうわしんどう)や、単調...