「ライデマイスター移動」を解説文に含む見出し語の検索結果(11~20/63件中)
ひねり数(ひねりすう、Writhe/Writhe number)とは、位相幾何学の一分野である結び目理論において、有向結び目・有向絡み目の射影図に対して定義される量。ねじれ数、テイト数、交点符号和とも...
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/11/28 14:05 UTC 版)「結び目 (数学)」の記事における「射影表示」の解説空間 R3 (resp. S3) に...
ブラケット多項式(ブラケットたこうしき、英: bracket polynomial)とは、位相幾何学の一分野である結び目理論において、結び目または絡み目の射影図に対して定義される、負冪を許す1...
ブラケット多項式(ブラケットたこうしき、英: bracket polynomial)とは、位相幾何学の一分野である結び目理論において、結び目または絡み目の射影図に対して定義される、負冪を許す1...
ブラケット多項式(ブラケットたこうしき、英: bracket polynomial)とは、位相幾何学の一分野である結び目理論において、結び目または絡み目の射影図に対して定義される、負冪を許す1...
数学の結び目理論の分野において、ジョーンズ多項式 (Jones polynomial)は ヴォーン・ジョーンズが1984年に発見した多項式不変量である。明確に言うと、ジョーンズ多項式は向き付けられた結...
数学の結び目理論の分野において、ジョーンズ多項式 (Jones polynomial)は ヴォーン・ジョーンズが1984年に発見した多項式不変量である。明確に言うと、ジョーンズ多項式は向き付けられた結...
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2013/03/04 04:13 UTC 版)「彩色数 (結び目理論)」の記事における「3彩色可能性」の解説結び目(絡み目)の射影図に...
結び目理論(むすびめりろん、knot theory)とは、紐の結び目を数学的に表現し研究する学問で、低次元位相幾何学の1種である。組合せ的位相幾何学や代数的位相幾何学とも関連が深い。素数と結び目にもエ...
結び目理論(むすびめりろん、knot theory)とは、紐の結び目を数学的に表現し研究する学問で、低次元位相幾何学の1種である。組合せ的位相幾何学や代数的位相幾何学とも関連が深い。素数と結び目にもエ...