Weblio 辞書 > 辞書・百科事典 > ライデマイスター移動の解説 > ライデマイスター移動の全文検索
「ライデマイスター移動」を解説文に含む見出し語の検索結果(11~20/63件中)

ひねり数(ひねりすう、Writhe/Writhe number)とは、位相幾何学の一分野である結び目理論において、有向結び目・有向絡み目の射影図に対して定義される量。ねじれ数、テイト数、交点符号和とも...
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/11/28 14:05 UTC 版)「結び目 (数学)」の記事における「射影表示」の解説空間 R3 (resp. S3) に...
ブラケット多項式(ブラケットたこうしき、英: bracket polynomial)とは、位相幾何学の一分野である結び目理論において、結び目または絡み目の射影図に対して定義される、負冪を許す1...
ブラケット多項式(ブラケットたこうしき、英: bracket polynomial)とは、位相幾何学の一分野である結び目理論において、結び目または絡み目の射影図に対して定義される、負冪を許す1...
ブラケット多項式(ブラケットたこうしき、英: bracket polynomial)とは、位相幾何学の一分野である結び目理論において、結び目または絡み目の射影図に対して定義される、負冪を許す1...
数学の結び目理論の分野において、ジョーンズ多項式 (Jones polynomial)は ヴォーン・ジョーンズが1984年に発見した多項式不変量である。明確に言うと、ジョーンズ多項式は向き付けられた結...
数学の結び目理論の分野において、ジョーンズ多項式 (Jones polynomial)は ヴォーン・ジョーンズが1984年に発見した多項式不変量である。明確に言うと、ジョーンズ多項式は向き付けられた結...
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2013/03/04 04:13 UTC 版)「彩色数 (結び目理論)」の記事における「3彩色可能性」の解説結び目(絡み目)の射影図に...
結び目理論(むすびめりろん、knot theory)とは、紐の結び目を数学的に表現し研究する学問で、低次元位相幾何学の1種である。組合せ的位相幾何学や代数的位相幾何学とも関連が深い。素数と結び目にもエ...
結び目理論(むすびめりろん、knot theory)とは、紐の結び目を数学的に表現し研究する学問で、低次元位相幾何学の1種である。組合せ的位相幾何学や代数的位相幾何学とも関連が深い。素数と結び目にもエ...




カテゴリ一覧

全て

ビジネス

業界用語

コンピュータ

電車

自動車・バイク

工学

建築・不動産

学問

文化

生活

ヘルスケア

趣味

スポーツ

生物

食品

人名

方言

辞書・百科事典

すべての辞書の索引

   

英語⇒日本語
日本語⇒英語
   
検索ランキング

©2025 GRAS Group, Inc.RSS