「標準形の存在証明」を解説文に含む見出し語の検索結果(1~7/7件中)
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/11/14 06:14 UTC 版)「ジョルダン標準形」の記事における「標準形の存在証明」の解説定理 任意の線形変換 f {...
ジョルダン標準形(ジョルダンひょうじゅんけい、英: Jordan normal form)とは、代数的閉体(例えば複素数体)上の正方行列に対する標準形のことである。任意の正方行列は本質的にただ...
ジョルダン標準形(ジョルダンひょうじゅんけい、英: Jordan normal form)とは、代数的閉体(例えば複素数体)上の正方行列に対する標準形のことである。任意の正方行列は本質的にただ...
ジョルダン標準形(ジョルダンひょうじゅんけい、英: Jordan normal form)とは、代数的閉体(例えば複素数体)上の正方行列に対する標準形のことである。任意の正方行列は本質的にただ...
ジョルダン標準形(ジョルダンひょうじゅんけい、英: Jordan normal form)とは、代数的閉体(例えば複素数体)上の正方行列に対する標準形のことである。任意の正方行列は本質的にただ...
ジョルダン標準形(ジョルダンひょうじゅんけい、英: Jordan normal form)とは、代数的閉体(例えば複素数体)上の正方行列に対する標準形のことである。任意の正方行列は本質的にただ...
ジョルダン標準形(ジョルダンひょうじゅんけい、英: Jordan normal form)とは、代数的閉体(例えば複素数体)上の正方行列に対する標準形のことである。任意の正方行列は本質的にただ...
< 前の結果 | 次の結果 >